interface.rs 174 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665
  1. // Heads up! Before working on this file you should read the parts
  2. // of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work
  3. // and RFCs 8200 and 4861 for any IPv6 and NDISC work.
  4. use core::cmp;
  5. use managed::{ManagedMap, ManagedSlice};
  6. #[cfg(any(feature = "proto-ipv4", feature = "proto-sixlowpan"))]
  7. use super::fragmentation::PacketAssemblerSet;
  8. use super::socket_set::SocketSet;
  9. use crate::iface::Routes;
  10. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  11. use crate::iface::{NeighborAnswer, NeighborCache};
  12. use crate::phy::{ChecksumCapabilities, Device, DeviceCapabilities, Medium, RxToken, TxToken};
  13. use crate::rand::Rand;
  14. #[cfg(feature = "socket-dhcpv4")]
  15. use crate::socket::dhcpv4;
  16. #[cfg(feature = "socket-dns")]
  17. use crate::socket::dns;
  18. use crate::socket::*;
  19. use crate::time::{Duration, Instant};
  20. use crate::wire::*;
  21. use crate::{Error, Result};
  22. pub(crate) struct FragmentsBuffer<'a> {
  23. #[cfg(feature = "proto-ipv4-fragmentation")]
  24. ipv4_fragments: PacketAssemblerSet<'a, Ipv4FragKey>,
  25. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  26. sixlowpan_fragments: PacketAssemblerSet<'a, SixlowpanFragKey>,
  27. #[cfg(not(any(
  28. feature = "proto-ipv4-fragmentation",
  29. feature = "proto-sixlowpan-fragmentation"
  30. )))]
  31. _lifetime: core::marker::PhantomData<&'a ()>,
  32. }
  33. pub(crate) struct OutPackets<'a> {
  34. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  35. sixlowpan_out_packet: SixlowpanOutPacket<'a>,
  36. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  37. _lifetime: core::marker::PhantomData<&'a ()>,
  38. }
  39. impl<'a> OutPackets<'a> {
  40. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  41. /// Returns `true` when all the data of the outgoing buffers are transmitted.
  42. fn all_transmitted(&self) -> bool {
  43. self.sixlowpan_out_packet.finished() || self.sixlowpan_out_packet.is_empty()
  44. }
  45. }
  46. #[allow(unused)]
  47. #[cfg(feature = "proto-sixlowpan")]
  48. pub(crate) struct SixlowpanOutPacket<'a> {
  49. /// The buffer that holds the unfragmented 6LoWPAN packet.
  50. buffer: ManagedSlice<'a, u8>,
  51. /// The size of the packet without the IEEE802.15.4 header and the fragmentation headers.
  52. packet_len: usize,
  53. /// The amount of bytes that already have been transmitted.
  54. sent_bytes: usize,
  55. /// The datagram size that is used for the fragmentation headers.
  56. datagram_size: u16,
  57. /// The datagram tag that is used for the fragmentation headers.
  58. datagram_tag: u16,
  59. datagram_offset: usize,
  60. /// The size of the FRAG_N packets.
  61. fragn_size: usize,
  62. /// The link layer IEEE802.15.4 source address.
  63. ll_dst_addr: Ieee802154Address,
  64. /// The link layer IEEE802.15.4 source address.
  65. ll_src_addr: Ieee802154Address,
  66. }
  67. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  68. impl<'a> SixlowpanOutPacket<'a> {
  69. pub(crate) fn new(buffer: ManagedSlice<'a, u8>) -> Self {
  70. Self {
  71. buffer,
  72. packet_len: 0,
  73. datagram_size: 0,
  74. datagram_tag: 0,
  75. datagram_offset: 0,
  76. sent_bytes: 0,
  77. fragn_size: 0,
  78. ll_dst_addr: Ieee802154Address::Absent,
  79. ll_src_addr: Ieee802154Address::Absent,
  80. }
  81. }
  82. /// Return `true` when everything is transmitted.
  83. #[inline]
  84. fn finished(&self) -> bool {
  85. self.packet_len == self.sent_bytes
  86. }
  87. /// Returns `true` when there is nothing to transmit.
  88. #[inline]
  89. fn is_empty(&self) -> bool {
  90. self.packet_len == 0
  91. }
  92. // Reset the buffer.
  93. fn reset(&mut self) {
  94. self.packet_len = 0;
  95. self.datagram_size = 0;
  96. self.datagram_tag = 0;
  97. self.sent_bytes = 0;
  98. self.fragn_size = 0;
  99. self.ll_dst_addr = Ieee802154Address::Absent;
  100. self.ll_src_addr = Ieee802154Address::Absent;
  101. }
  102. }
  103. macro_rules! check {
  104. ($e:expr) => {
  105. match $e {
  106. Ok(x) => x,
  107. Err(_) => {
  108. // concat!/stringify! doesn't work with defmt macros
  109. #[cfg(not(feature = "defmt"))]
  110. net_trace!(concat!("iface: malformed ", stringify!($e)));
  111. #[cfg(feature = "defmt")]
  112. net_trace!("iface: malformed");
  113. return Default::default();
  114. }
  115. }
  116. };
  117. }
  118. /// A network interface.
  119. ///
  120. /// The network interface logically owns a number of other data structures; to avoid
  121. /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be
  122. /// a `&mut [T]`, or `Vec<T>` if a heap is available.
  123. pub struct Interface<'a> {
  124. inner: InterfaceInner<'a>,
  125. fragments: FragmentsBuffer<'a>,
  126. out_packets: OutPackets<'a>,
  127. }
  128. /// The device independent part of an Ethernet network interface.
  129. ///
  130. /// Separating the device from the data required for processing and dispatching makes
  131. /// it possible to borrow them independently. For example, the tx and rx tokens borrow
  132. /// the `device` mutably until they're used, which makes it impossible to call other
  133. /// methods on the `Interface` in this time (since its `device` field is borrowed
  134. /// exclusively). However, it is still possible to call methods on its `inner` field.
  135. pub struct InterfaceInner<'a> {
  136. caps: DeviceCapabilities,
  137. now: Instant,
  138. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  139. neighbor_cache: Option<NeighborCache<'a>>,
  140. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  141. hardware_addr: Option<HardwareAddress>,
  142. #[cfg(feature = "medium-ieee802154")]
  143. sequence_no: u8,
  144. #[cfg(feature = "medium-ieee802154")]
  145. pan_id: Option<Ieee802154Pan>,
  146. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  147. tag: u16,
  148. ip_addrs: ManagedSlice<'a, IpCidr>,
  149. #[cfg(feature = "proto-ipv4")]
  150. any_ip: bool,
  151. routes: Routes<'a>,
  152. #[cfg(feature = "proto-igmp")]
  153. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  154. /// When to report for (all or) the next multicast group membership via IGMP
  155. #[cfg(feature = "proto-igmp")]
  156. igmp_report_state: IgmpReportState,
  157. rand: Rand,
  158. }
  159. /// A builder structure used for creating a network interface.
  160. pub struct InterfaceBuilder<'a> {
  161. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  162. hardware_addr: Option<HardwareAddress>,
  163. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  164. neighbor_cache: Option<NeighborCache<'a>>,
  165. #[cfg(feature = "medium-ieee802154")]
  166. pan_id: Option<Ieee802154Pan>,
  167. ip_addrs: ManagedSlice<'a, IpCidr>,
  168. #[cfg(feature = "proto-ipv4")]
  169. any_ip: bool,
  170. routes: Routes<'a>,
  171. /// Does not share storage with `ipv6_multicast_groups` to avoid IPv6 size overhead.
  172. #[cfg(feature = "proto-igmp")]
  173. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  174. random_seed: u64,
  175. #[cfg(feature = "proto-ipv4-fragmentation")]
  176. ipv4_fragments: Option<PacketAssemblerSet<'a, Ipv4FragKey>>,
  177. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  178. sixlowpan_fragments: Option<PacketAssemblerSet<'a, SixlowpanFragKey>>,
  179. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  180. sixlowpan_out_buffer: Option<ManagedSlice<'a, u8>>,
  181. }
  182. impl<'a> InterfaceBuilder<'a> {
  183. /// Create a builder used for creating a network interface using the
  184. /// given device and address.
  185. #[cfg_attr(
  186. all(feature = "medium-ethernet", not(feature = "proto-sixlowpan")),
  187. doc = r##"
  188. # Examples
  189. ```
  190. # use std::collections::BTreeMap;
  191. #[cfg(feature = "proto-ipv4-fragmentation")]
  192. use smoltcp::iface::FragmentsCache;
  193. use smoltcp::iface::{InterfaceBuilder, NeighborCache};
  194. # use smoltcp::phy::{Loopback, Medium};
  195. use smoltcp::wire::{EthernetAddress, IpCidr, IpAddress};
  196. let mut device = // ...
  197. # Loopback::new(Medium::Ethernet);
  198. let hw_addr = // ...
  199. # EthernetAddress::default();
  200. let neighbor_cache = // ...
  201. # NeighborCache::new(BTreeMap::new());
  202. # #[cfg(feature = "proto-ipv4-fragmentation")]
  203. # let ipv4_frag_cache = // ...
  204. # FragmentsCache::new(vec![], BTreeMap::new());
  205. let ip_addrs = // ...
  206. # [];
  207. let builder = InterfaceBuilder::new()
  208. .hardware_addr(hw_addr.into())
  209. .neighbor_cache(neighbor_cache)
  210. .ip_addrs(ip_addrs);
  211. # #[cfg(feature = "proto-ipv4-fragmentation")]
  212. let builder = builder.ipv4_fragments_cache(ipv4_frag_cache);
  213. let iface = builder.finalize(&mut device);
  214. ```
  215. "##
  216. )]
  217. #[allow(clippy::new_without_default)]
  218. pub fn new() -> Self {
  219. InterfaceBuilder {
  220. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  221. hardware_addr: None,
  222. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  223. neighbor_cache: None,
  224. #[cfg(feature = "medium-ieee802154")]
  225. pan_id: None,
  226. ip_addrs: ManagedSlice::Borrowed(&mut []),
  227. #[cfg(feature = "proto-ipv4")]
  228. any_ip: false,
  229. routes: Routes::new(ManagedMap::Borrowed(&mut [])),
  230. #[cfg(feature = "proto-igmp")]
  231. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  232. random_seed: 0,
  233. #[cfg(feature = "proto-ipv4-fragmentation")]
  234. ipv4_fragments: None,
  235. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  236. sixlowpan_fragments: None,
  237. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  238. sixlowpan_out_buffer: None,
  239. }
  240. }
  241. /// Set the random seed for this interface.
  242. ///
  243. /// It is strongly recommended that the random seed is different on each boot,
  244. /// to avoid problems with TCP port/sequence collisions.
  245. ///
  246. /// The seed doesn't have to be cryptographically secure.
  247. pub fn random_seed(mut self, random_seed: u64) -> Self {
  248. self.random_seed = random_seed;
  249. self
  250. }
  251. /// Set the Hardware address the interface will use. See also
  252. /// [hardware_addr].
  253. ///
  254. /// # Panics
  255. /// This function panics if the address is not unicast.
  256. ///
  257. /// [hardware_addr]: struct.Interface.html#method.hardware_addr
  258. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  259. pub fn hardware_addr(mut self, addr: HardwareAddress) -> Self {
  260. InterfaceInner::check_hardware_addr(&addr);
  261. self.hardware_addr = Some(addr);
  262. self
  263. }
  264. /// Set the IEEE802.15.4 PAN ID the interface will use.
  265. ///
  266. /// **NOTE**: we use the same PAN ID for destination and source.
  267. #[cfg(feature = "medium-ieee802154")]
  268. pub fn pan_id(mut self, pan_id: Ieee802154Pan) -> Self {
  269. self.pan_id = Some(pan_id);
  270. self
  271. }
  272. /// Set the IP addresses the interface will use. See also
  273. /// [ip_addrs].
  274. ///
  275. /// # Panics
  276. /// This function panics if any of the addresses are not unicast.
  277. ///
  278. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  279. pub fn ip_addrs<T>(mut self, ip_addrs: T) -> Self
  280. where
  281. T: Into<ManagedSlice<'a, IpCidr>>,
  282. {
  283. let ip_addrs = ip_addrs.into();
  284. InterfaceInner::check_ip_addrs(&ip_addrs);
  285. self.ip_addrs = ip_addrs;
  286. self
  287. }
  288. /// Enable or disable the AnyIP capability, allowing packets to be received
  289. /// locally on IPv4 addresses other than the interface's configured [ip_addrs].
  290. /// When AnyIP is enabled and a route prefix in [routes] specifies one of
  291. /// the interface's [ip_addrs] as its gateway, the interface will accept
  292. /// packets addressed to that prefix.
  293. ///
  294. /// # IPv6
  295. ///
  296. /// This option is not available or required for IPv6 as packets sent to
  297. /// the interface are not filtered by IPv6 address.
  298. ///
  299. /// [routes]: struct.Interface.html#method.routes
  300. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  301. #[cfg(feature = "proto-ipv4")]
  302. pub fn any_ip(mut self, enabled: bool) -> Self {
  303. self.any_ip = enabled;
  304. self
  305. }
  306. /// Set the IP routes the interface will use. See also
  307. /// [routes].
  308. ///
  309. /// [routes]: struct.Interface.html#method.routes
  310. pub fn routes<T>(mut self, routes: T) -> InterfaceBuilder<'a>
  311. where
  312. T: Into<Routes<'a>>,
  313. {
  314. self.routes = routes.into();
  315. self
  316. }
  317. /// Provide storage for multicast groups.
  318. ///
  319. /// Join multicast groups by calling [`join_multicast_group()`] on an `Interface`.
  320. /// Using [`join_multicast_group()`] will send initial membership reports.
  321. ///
  322. /// A previously destroyed interface can be recreated by reusing the multicast group
  323. /// storage, i.e. providing a non-empty storage to `ipv4_multicast_groups()`.
  324. /// Note that this way initial membership reports are **not** sent.
  325. ///
  326. /// [`join_multicast_group()`]: struct.Interface.html#method.join_multicast_group
  327. #[cfg(feature = "proto-igmp")]
  328. pub fn ipv4_multicast_groups<T>(mut self, ipv4_multicast_groups: T) -> Self
  329. where
  330. T: Into<ManagedMap<'a, Ipv4Address, ()>>,
  331. {
  332. self.ipv4_multicast_groups = ipv4_multicast_groups.into();
  333. self
  334. }
  335. /// Set the Neighbor Cache the interface will use.
  336. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  337. pub fn neighbor_cache(mut self, neighbor_cache: NeighborCache<'a>) -> Self {
  338. self.neighbor_cache = Some(neighbor_cache);
  339. self
  340. }
  341. #[cfg(feature = "proto-ipv4-fragmentation")]
  342. pub fn ipv4_fragments_cache(mut self, storage: PacketAssemblerSet<'a, Ipv4FragKey>) -> Self {
  343. self.ipv4_fragments = Some(storage);
  344. self
  345. }
  346. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  347. pub fn sixlowpan_fragments_cache(
  348. mut self,
  349. storage: PacketAssemblerSet<'a, SixlowpanFragKey>,
  350. ) -> Self {
  351. self.sixlowpan_fragments = Some(storage);
  352. self
  353. }
  354. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  355. pub fn sixlowpan_out_packet_cache<T>(mut self, storage: T) -> Self
  356. where
  357. T: Into<ManagedSlice<'a, u8>>,
  358. {
  359. self.sixlowpan_out_buffer = Some(storage.into());
  360. self
  361. }
  362. /// Create a network interface using the previously provided configuration.
  363. ///
  364. /// # Panics
  365. /// If a required option is not provided, this function will panic. Required
  366. /// options are:
  367. ///
  368. /// - [ethernet_addr]
  369. /// - [neighbor_cache]
  370. ///
  371. /// [ethernet_addr]: #method.ethernet_addr
  372. /// [neighbor_cache]: #method.neighbor_cache
  373. pub fn finalize<D>(self, device: &mut D) -> Interface<'a>
  374. where
  375. D: for<'d> Device<'d>,
  376. {
  377. let caps = device.capabilities();
  378. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  379. let (hardware_addr, neighbor_cache) = match caps.medium {
  380. #[cfg(feature = "medium-ethernet")]
  381. Medium::Ethernet => (
  382. Some(
  383. self.hardware_addr
  384. .expect("hardware_addr required option was not set"),
  385. ),
  386. Some(
  387. self.neighbor_cache
  388. .expect("neighbor_cache required option was not set"),
  389. ),
  390. ),
  391. #[cfg(feature = "medium-ip")]
  392. Medium::Ip => {
  393. assert!(
  394. self.hardware_addr.is_none(),
  395. "hardware_addr is set, but device medium is IP"
  396. );
  397. assert!(
  398. self.neighbor_cache.is_none(),
  399. "neighbor_cache is set, but device medium is IP"
  400. );
  401. (None, None)
  402. }
  403. #[cfg(feature = "medium-ieee802154")]
  404. Medium::Ieee802154 => (
  405. Some(
  406. self.hardware_addr
  407. .expect("hardware_addr required option was not set"),
  408. ),
  409. Some(
  410. self.neighbor_cache
  411. .expect("neighbor_cache required option was not set"),
  412. ),
  413. ),
  414. };
  415. #[cfg(feature = "medium-ieee802154")]
  416. let mut rand = Rand::new(self.random_seed);
  417. #[cfg(not(feature = "medium-ieee802154"))]
  418. let rand = Rand::new(self.random_seed);
  419. #[cfg(feature = "medium-ieee802154")]
  420. let mut sequence_no;
  421. #[cfg(feature = "medium-ieee802154")]
  422. loop {
  423. sequence_no = (rand.rand_u32() & 0xff) as u8;
  424. if sequence_no != 0 {
  425. break;
  426. }
  427. }
  428. #[cfg(feature = "proto-sixlowpan")]
  429. let mut tag;
  430. #[cfg(feature = "proto-sixlowpan")]
  431. loop {
  432. tag = (rand.rand_u32() & 0xffff) as u16;
  433. if tag != 0 {
  434. break;
  435. }
  436. }
  437. Interface {
  438. fragments: FragmentsBuffer {
  439. #[cfg(feature = "proto-ipv4-fragmentation")]
  440. ipv4_fragments: self
  441. .ipv4_fragments
  442. .expect("Cache for incoming IPv4 fragments is required"),
  443. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  444. sixlowpan_fragments: self
  445. .sixlowpan_fragments
  446. .expect("Cache for incoming 6LoWPAN fragments is required"),
  447. #[cfg(not(any(
  448. feature = "proto-ipv4-fragmentation",
  449. feature = "proto-sixlowpan-fragmentation"
  450. )))]
  451. _lifetime: core::marker::PhantomData,
  452. },
  453. out_packets: OutPackets {
  454. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  455. sixlowpan_out_packet: SixlowpanOutPacket::new(
  456. self.sixlowpan_out_buffer
  457. .expect("Cache for outgoing 6LoWPAN fragments is required"),
  458. ),
  459. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  460. _lifetime: core::marker::PhantomData,
  461. },
  462. inner: InterfaceInner {
  463. now: Instant::from_secs(0),
  464. caps,
  465. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  466. hardware_addr,
  467. ip_addrs: self.ip_addrs,
  468. #[cfg(feature = "proto-ipv4")]
  469. any_ip: self.any_ip,
  470. routes: self.routes,
  471. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  472. neighbor_cache,
  473. #[cfg(feature = "proto-igmp")]
  474. ipv4_multicast_groups: self.ipv4_multicast_groups,
  475. #[cfg(feature = "proto-igmp")]
  476. igmp_report_state: IgmpReportState::Inactive,
  477. #[cfg(feature = "medium-ieee802154")]
  478. sequence_no,
  479. #[cfg(feature = "medium-ieee802154")]
  480. pan_id: self.pan_id,
  481. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  482. tag,
  483. rand,
  484. },
  485. }
  486. }
  487. }
  488. #[derive(Debug, PartialEq)]
  489. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  490. #[cfg(feature = "medium-ethernet")]
  491. enum EthernetPacket<'a> {
  492. #[cfg(feature = "proto-ipv4")]
  493. Arp(ArpRepr),
  494. Ip(IpPacket<'a>),
  495. }
  496. #[derive(Debug, PartialEq)]
  497. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  498. pub(crate) enum IpPacket<'a> {
  499. #[cfg(feature = "proto-ipv4")]
  500. Icmpv4((Ipv4Repr, Icmpv4Repr<'a>)),
  501. #[cfg(feature = "proto-igmp")]
  502. Igmp((Ipv4Repr, IgmpRepr)),
  503. #[cfg(feature = "proto-ipv6")]
  504. Icmpv6((Ipv6Repr, Icmpv6Repr<'a>)),
  505. #[cfg(feature = "socket-raw")]
  506. Raw((IpRepr, &'a [u8])),
  507. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  508. Udp((IpRepr, UdpRepr, &'a [u8])),
  509. #[cfg(feature = "socket-tcp")]
  510. Tcp((IpRepr, TcpRepr<'a>)),
  511. #[cfg(feature = "socket-dhcpv4")]
  512. Dhcpv4((Ipv4Repr, UdpRepr, DhcpRepr<'a>)),
  513. }
  514. impl<'a> IpPacket<'a> {
  515. pub(crate) fn ip_repr(&self) -> IpRepr {
  516. match self {
  517. #[cfg(feature = "proto-ipv4")]
  518. IpPacket::Icmpv4((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  519. #[cfg(feature = "proto-igmp")]
  520. IpPacket::Igmp((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  521. #[cfg(feature = "proto-ipv6")]
  522. IpPacket::Icmpv6((ipv6_repr, _)) => IpRepr::Ipv6(*ipv6_repr),
  523. #[cfg(feature = "socket-raw")]
  524. IpPacket::Raw((ip_repr, _)) => ip_repr.clone(),
  525. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  526. IpPacket::Udp((ip_repr, _, _)) => ip_repr.clone(),
  527. #[cfg(feature = "socket-tcp")]
  528. IpPacket::Tcp((ip_repr, _)) => ip_repr.clone(),
  529. #[cfg(feature = "socket-dhcpv4")]
  530. IpPacket::Dhcpv4((ipv4_repr, _, _)) => IpRepr::Ipv4(*ipv4_repr),
  531. }
  532. }
  533. pub(crate) fn emit_payload(
  534. &self,
  535. _ip_repr: IpRepr,
  536. payload: &mut [u8],
  537. caps: &DeviceCapabilities,
  538. ) {
  539. match self {
  540. #[cfg(feature = "proto-ipv4")]
  541. IpPacket::Icmpv4((_, icmpv4_repr)) => {
  542. icmpv4_repr.emit(&mut Icmpv4Packet::new_unchecked(payload), &caps.checksum)
  543. }
  544. #[cfg(feature = "proto-igmp")]
  545. IpPacket::Igmp((_, igmp_repr)) => {
  546. igmp_repr.emit(&mut IgmpPacket::new_unchecked(payload))
  547. }
  548. #[cfg(feature = "proto-ipv6")]
  549. IpPacket::Icmpv6((_, icmpv6_repr)) => icmpv6_repr.emit(
  550. &_ip_repr.src_addr(),
  551. &_ip_repr.dst_addr(),
  552. &mut Icmpv6Packet::new_unchecked(payload),
  553. &caps.checksum,
  554. ),
  555. #[cfg(feature = "socket-raw")]
  556. IpPacket::Raw((_, raw_packet)) => payload.copy_from_slice(raw_packet),
  557. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  558. IpPacket::Udp((_, udp_repr, inner_payload)) => udp_repr.emit(
  559. &mut UdpPacket::new_unchecked(payload),
  560. &_ip_repr.src_addr(),
  561. &_ip_repr.dst_addr(),
  562. inner_payload.len(),
  563. |buf| buf.copy_from_slice(inner_payload),
  564. &caps.checksum,
  565. ),
  566. #[cfg(feature = "socket-tcp")]
  567. IpPacket::Tcp((_, mut tcp_repr)) => {
  568. // This is a terrible hack to make TCP performance more acceptable on systems
  569. // where the TCP buffers are significantly larger than network buffers,
  570. // e.g. a 64 kB TCP receive buffer (and so, when empty, a 64k window)
  571. // together with four 1500 B Ethernet receive buffers. If left untreated,
  572. // this would result in our peer pushing our window and sever packet loss.
  573. //
  574. // I'm really not happy about this "solution" but I don't know what else to do.
  575. if let Some(max_burst_size) = caps.max_burst_size {
  576. let mut max_segment_size = caps.max_transmission_unit;
  577. max_segment_size -= _ip_repr.buffer_len();
  578. max_segment_size -= tcp_repr.header_len();
  579. let max_window_size = max_burst_size * max_segment_size;
  580. if tcp_repr.window_len as usize > max_window_size {
  581. tcp_repr.window_len = max_window_size as u16;
  582. }
  583. }
  584. tcp_repr.emit(
  585. &mut TcpPacket::new_unchecked(payload),
  586. &_ip_repr.src_addr(),
  587. &_ip_repr.dst_addr(),
  588. &caps.checksum,
  589. );
  590. }
  591. #[cfg(feature = "socket-dhcpv4")]
  592. IpPacket::Dhcpv4((_, udp_repr, dhcp_repr)) => udp_repr.emit(
  593. &mut UdpPacket::new_unchecked(payload),
  594. &_ip_repr.src_addr(),
  595. &_ip_repr.dst_addr(),
  596. dhcp_repr.buffer_len(),
  597. |buf| dhcp_repr.emit(&mut DhcpPacket::new_unchecked(buf)).unwrap(),
  598. &caps.checksum,
  599. ),
  600. }
  601. }
  602. }
  603. #[cfg(any(feature = "proto-ipv4", feature = "proto-ipv6"))]
  604. fn icmp_reply_payload_len(len: usize, mtu: usize, header_len: usize) -> usize {
  605. // Send back as much of the original payload as will fit within
  606. // the minimum MTU required by IPv4. See RFC 1812 § 4.3.2.3 for
  607. // more details.
  608. //
  609. // Since the entire network layer packet must fit within the minimum
  610. // MTU supported, the payload must not exceed the following:
  611. //
  612. // <min mtu> - IP Header Size * 2 - ICMPv4 DstUnreachable hdr size
  613. cmp::min(len, mtu - header_len * 2 - 8)
  614. }
  615. #[cfg(feature = "proto-igmp")]
  616. enum IgmpReportState {
  617. Inactive,
  618. ToGeneralQuery {
  619. version: IgmpVersion,
  620. timeout: Instant,
  621. interval: Duration,
  622. next_index: usize,
  623. },
  624. ToSpecificQuery {
  625. version: IgmpVersion,
  626. timeout: Instant,
  627. group: Ipv4Address,
  628. },
  629. }
  630. impl<'a> Interface<'a> {
  631. /// Get the socket context.
  632. ///
  633. /// The context is needed for some socket methods.
  634. pub fn context(&mut self) -> &mut InterfaceInner<'a> {
  635. &mut self.inner
  636. }
  637. /// Get the HardwareAddress address of the interface.
  638. ///
  639. /// # Panics
  640. /// This function panics if the medium is not Ethernet or Ieee802154.
  641. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  642. pub fn hardware_addr(&self) -> HardwareAddress {
  643. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  644. assert!(self.inner.caps.medium == Medium::Ethernet);
  645. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  646. assert!(self.inner.caps.medium == Medium::Ieee802154);
  647. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  648. assert!(
  649. self.inner.caps.medium == Medium::Ethernet
  650. || self.inner.caps.medium == Medium::Ieee802154
  651. );
  652. self.inner.hardware_addr.unwrap()
  653. }
  654. /// Set the HardwareAddress address of the interface.
  655. ///
  656. /// # Panics
  657. /// This function panics if the address is not unicast, and if the medium is not Ethernet or
  658. /// Ieee802154.
  659. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  660. pub fn set_hardware_addr(&mut self, addr: HardwareAddress) {
  661. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  662. assert!(self.inner.caps.medium == Medium::Ethernet);
  663. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  664. assert!(self.inner.caps.medium == Medium::Ieee802154);
  665. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  666. assert!(
  667. self.inner.caps.medium == Medium::Ethernet
  668. || self.inner.caps.medium == Medium::Ieee802154
  669. );
  670. InterfaceInner::check_hardware_addr(&addr);
  671. self.inner.hardware_addr = Some(addr);
  672. }
  673. /// Add an address to a list of subscribed multicast IP addresses.
  674. ///
  675. /// Returns `Ok(announce_sent)` if the address was added successfully, where `annouce_sent`
  676. /// indicates whether an initial immediate announcement has been sent.
  677. pub fn join_multicast_group<D, T: Into<IpAddress>>(
  678. &mut self,
  679. device: &mut D,
  680. addr: T,
  681. timestamp: Instant,
  682. ) -> Result<bool>
  683. where
  684. D: for<'d> Device<'d>,
  685. {
  686. self.inner.now = timestamp;
  687. match addr.into() {
  688. #[cfg(feature = "proto-igmp")]
  689. IpAddress::Ipv4(addr) => {
  690. let is_not_new = self
  691. .inner
  692. .ipv4_multicast_groups
  693. .insert(addr, ())
  694. .map_err(|_| Error::Exhausted)?
  695. .is_some();
  696. if is_not_new {
  697. Ok(false)
  698. } else if let Some(pkt) = self.inner.igmp_report_packet(IgmpVersion::Version2, addr)
  699. {
  700. // Send initial membership report
  701. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  702. self.inner.dispatch_ip(tx_token, pkt, None)?;
  703. Ok(true)
  704. } else {
  705. Ok(false)
  706. }
  707. }
  708. // Multicast is not yet implemented for other address families
  709. #[allow(unreachable_patterns)]
  710. _ => Err(Error::Unaddressable),
  711. }
  712. }
  713. /// Remove an address from the subscribed multicast IP addresses.
  714. ///
  715. /// Returns `Ok(leave_sent)` if the address was removed successfully, where `leave_sent`
  716. /// indicates whether an immediate leave packet has been sent.
  717. pub fn leave_multicast_group<D, T: Into<IpAddress>>(
  718. &mut self,
  719. device: &mut D,
  720. addr: T,
  721. timestamp: Instant,
  722. ) -> Result<bool>
  723. where
  724. D: for<'d> Device<'d>,
  725. {
  726. self.inner.now = timestamp;
  727. match addr.into() {
  728. #[cfg(feature = "proto-igmp")]
  729. IpAddress::Ipv4(addr) => {
  730. let was_not_present = self.inner.ipv4_multicast_groups.remove(&addr).is_none();
  731. if was_not_present {
  732. Ok(false)
  733. } else if let Some(pkt) = self.inner.igmp_leave_packet(addr) {
  734. // Send group leave packet
  735. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  736. self.inner.dispatch_ip(tx_token, pkt, None)?;
  737. Ok(true)
  738. } else {
  739. Ok(false)
  740. }
  741. }
  742. // Multicast is not yet implemented for other address families
  743. #[allow(unreachable_patterns)]
  744. _ => Err(Error::Unaddressable),
  745. }
  746. }
  747. /// Check whether the interface listens to given destination multicast IP address.
  748. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  749. self.inner.has_multicast_group(addr)
  750. }
  751. /// Get the IP addresses of the interface.
  752. pub fn ip_addrs(&self) -> &[IpCidr] {
  753. self.inner.ip_addrs.as_ref()
  754. }
  755. /// Get the first IPv4 address if present.
  756. #[cfg(feature = "proto-ipv4")]
  757. pub fn ipv4_addr(&self) -> Option<Ipv4Address> {
  758. self.ip_addrs()
  759. .iter()
  760. .find_map(|cidr| match cidr.address() {
  761. IpAddress::Ipv4(addr) => Some(addr),
  762. #[allow(unreachable_patterns)]
  763. _ => None,
  764. })
  765. }
  766. /// Update the IP addresses of the interface.
  767. ///
  768. /// # Panics
  769. /// This function panics if any of the addresses are not unicast.
  770. pub fn update_ip_addrs<F: FnOnce(&mut ManagedSlice<'a, IpCidr>)>(&mut self, f: F) {
  771. f(&mut self.inner.ip_addrs);
  772. InterfaceInner::flush_cache(&mut self.inner);
  773. InterfaceInner::check_ip_addrs(&self.inner.ip_addrs)
  774. }
  775. /// Check whether the interface has the given IP address assigned.
  776. pub fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  777. self.inner.has_ip_addr(addr)
  778. }
  779. /// Get the first IPv4 address of the interface.
  780. #[cfg(feature = "proto-ipv4")]
  781. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  782. self.inner.ipv4_address()
  783. }
  784. pub fn routes(&self) -> &Routes<'a> {
  785. &self.inner.routes
  786. }
  787. pub fn routes_mut(&mut self) -> &mut Routes<'a> {
  788. &mut self.inner.routes
  789. }
  790. /// Transmit packets queued in the given sockets, and receive packets queued
  791. /// in the device.
  792. ///
  793. /// This function returns a boolean value indicating whether any packets were
  794. /// processed or emitted, and thus, whether the readiness of any socket might
  795. /// have changed.
  796. ///
  797. /// # Errors
  798. /// This method will routinely return errors in response to normal network
  799. /// activity as well as certain boundary conditions such as buffer exhaustion.
  800. /// These errors are provided as an aid for troubleshooting, and are meant
  801. /// to be logged and ignored.
  802. ///
  803. /// As a special case, `Err(Error::Unrecognized)` is returned in response to
  804. /// packets containing any unsupported protocol, option, or form, which is
  805. /// a very common occurrence and on a production system it should not even
  806. /// be logged.
  807. pub fn poll<D>(
  808. &mut self,
  809. timestamp: Instant,
  810. device: &mut D,
  811. sockets: &mut SocketSet<'_>,
  812. ) -> Result<bool>
  813. where
  814. D: for<'d> Device<'d>,
  815. {
  816. self.inner.now = timestamp;
  817. #[cfg(feature = "proto-ipv4-fragmentation")]
  818. if let Err(e) = self
  819. .fragments
  820. .ipv4_fragments
  821. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  822. {
  823. return Err(e);
  824. }
  825. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  826. if let Err(e) = self
  827. .fragments
  828. .sixlowpan_fragments
  829. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  830. {
  831. return Err(e);
  832. }
  833. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  834. match self.sixlowpan_egress(device) {
  835. Ok(true) => return Ok(true),
  836. Err(e) => return Err(e),
  837. _ => (),
  838. }
  839. let mut readiness_may_have_changed = false;
  840. loop {
  841. let processed_any = self.socket_ingress(device, sockets);
  842. let emitted_any = self.socket_egress(device, sockets);
  843. #[cfg(feature = "proto-igmp")]
  844. self.igmp_egress(device)?;
  845. if processed_any || emitted_any {
  846. readiness_may_have_changed = true;
  847. } else {
  848. break;
  849. }
  850. }
  851. Ok(readiness_may_have_changed)
  852. }
  853. /// Return a _soft deadline_ for calling [poll] the next time.
  854. /// The [Instant] returned is the time at which you should call [poll] next.
  855. /// It is harmless (but wastes energy) to call it before the [Instant], and
  856. /// potentially harmful (impacting quality of service) to call it after the
  857. /// [Instant]
  858. ///
  859. /// [poll]: #method.poll
  860. /// [Instant]: struct.Instant.html
  861. pub fn poll_at(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Instant> {
  862. self.inner.now = timestamp;
  863. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  864. if !self.out_packets.all_transmitted() {
  865. return Some(Instant::from_millis(0));
  866. }
  867. let inner = &mut self.inner;
  868. sockets
  869. .items()
  870. .filter_map(move |item| {
  871. let socket_poll_at = item.socket.poll_at(inner);
  872. match item
  873. .meta
  874. .poll_at(socket_poll_at, |ip_addr| inner.has_neighbor(&ip_addr))
  875. {
  876. PollAt::Ingress => None,
  877. PollAt::Time(instant) => Some(instant),
  878. PollAt::Now => Some(Instant::from_millis(0)),
  879. }
  880. })
  881. .min()
  882. }
  883. /// Return an _advisory wait time_ for calling [poll] the next time.
  884. /// The [Duration] returned is the time left to wait before calling [poll] next.
  885. /// It is harmless (but wastes energy) to call it before the [Duration] has passed,
  886. /// and potentially harmful (impacting quality of service) to call it after the
  887. /// [Duration] has passed.
  888. ///
  889. /// [poll]: #method.poll
  890. /// [Duration]: struct.Duration.html
  891. pub fn poll_delay(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Duration> {
  892. match self.poll_at(timestamp, sockets) {
  893. Some(poll_at) if timestamp < poll_at => Some(poll_at - timestamp),
  894. Some(_) => Some(Duration::from_millis(0)),
  895. _ => None,
  896. }
  897. }
  898. fn socket_ingress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  899. where
  900. D: for<'d> Device<'d>,
  901. {
  902. let mut processed_any = false;
  903. let Self {
  904. inner,
  905. fragments: ref mut _fragments,
  906. out_packets: _out_packets,
  907. } = self;
  908. while let Some((rx_token, tx_token)) = device.receive() {
  909. let res = rx_token.consume(inner.now, |frame| {
  910. match inner.caps.medium {
  911. #[cfg(feature = "medium-ethernet")]
  912. Medium::Ethernet => {
  913. if let Some(packet) = inner.process_ethernet(sockets, &frame, _fragments) {
  914. if let Err(err) = inner.dispatch(tx_token, packet) {
  915. net_debug!("Failed to send response: {}", err);
  916. }
  917. }
  918. }
  919. #[cfg(feature = "medium-ip")]
  920. Medium::Ip => {
  921. if let Some(packet) = inner.process_ip(sockets, &frame, _fragments) {
  922. if let Err(err) = inner.dispatch_ip(tx_token, packet, None) {
  923. net_debug!("Failed to send response: {}", err);
  924. }
  925. }
  926. }
  927. #[cfg(feature = "medium-ieee802154")]
  928. Medium::Ieee802154 => {
  929. if let Some(packet) = inner.process_ieee802154(sockets, &frame, _fragments)
  930. {
  931. if let Err(err) =
  932. inner.dispatch_ip(tx_token, packet, Some(_out_packets))
  933. {
  934. net_debug!("Failed to send response: {}", err);
  935. }
  936. }
  937. }
  938. }
  939. processed_any = true;
  940. Ok(())
  941. });
  942. if let Err(err) = res {
  943. net_debug!("Failed to consume RX token: {}", err);
  944. }
  945. }
  946. processed_any
  947. }
  948. fn socket_egress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  949. where
  950. D: for<'d> Device<'d>,
  951. {
  952. let Self {
  953. inner,
  954. out_packets: _out_packets,
  955. ..
  956. } = self;
  957. let _caps = device.capabilities();
  958. let mut emitted_any = false;
  959. for item in sockets.items_mut() {
  960. if !item
  961. .meta
  962. .egress_permitted(inner.now, |ip_addr| inner.has_neighbor(&ip_addr))
  963. {
  964. continue;
  965. }
  966. let mut neighbor_addr = None;
  967. let mut respond = |inner: &mut InterfaceInner, response: IpPacket| {
  968. neighbor_addr = Some(response.ip_repr().dst_addr());
  969. match device.transmit().ok_or(Error::Exhausted) {
  970. Ok(_t) => {
  971. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  972. if let Err(_e) = inner.dispatch_ip(_t, response, Some(_out_packets)) {
  973. net_debug!("failed to dispatch IP: {}", _e);
  974. }
  975. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  976. if let Err(_e) = inner.dispatch_ip(_t, response, None) {
  977. net_debug!("failed to dispatch IP: {}", _e);
  978. }
  979. emitted_any = true;
  980. }
  981. Err(e) => {
  982. net_debug!("failed to transmit IP: {}", e);
  983. }
  984. }
  985. Ok(())
  986. };
  987. let result = match &mut item.socket {
  988. #[cfg(feature = "socket-raw")]
  989. Socket::Raw(socket) => socket.dispatch(inner, |inner, response| {
  990. respond(inner, IpPacket::Raw(response))
  991. }),
  992. #[cfg(feature = "socket-icmp")]
  993. Socket::Icmp(socket) => socket.dispatch(inner, |inner, response| match response {
  994. #[cfg(feature = "proto-ipv4")]
  995. (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) => {
  996. respond(inner, IpPacket::Icmpv4((ipv4_repr, icmpv4_repr)))
  997. }
  998. #[cfg(feature = "proto-ipv6")]
  999. (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) => {
  1000. respond(inner, IpPacket::Icmpv6((ipv6_repr, icmpv6_repr)))
  1001. }
  1002. #[allow(unreachable_patterns)]
  1003. _ => unreachable!(),
  1004. }),
  1005. #[cfg(feature = "socket-udp")]
  1006. Socket::Udp(socket) => socket.dispatch(inner, |inner, response| {
  1007. respond(inner, IpPacket::Udp(response))
  1008. }),
  1009. #[cfg(feature = "socket-tcp")]
  1010. Socket::Tcp(socket) => socket.dispatch(inner, |inner, response| {
  1011. respond(inner, IpPacket::Tcp(response))
  1012. }),
  1013. #[cfg(feature = "socket-dhcpv4")]
  1014. Socket::Dhcpv4(socket) => socket.dispatch(inner, |inner, response| {
  1015. respond(inner, IpPacket::Dhcpv4(response))
  1016. }),
  1017. #[cfg(feature = "socket-dns")]
  1018. Socket::Dns(ref mut socket) => socket.dispatch(inner, |inner, response| {
  1019. respond(inner, IpPacket::Udp(response))
  1020. }),
  1021. };
  1022. match result {
  1023. Err(Error::Exhausted) => break, // Device buffer full.
  1024. Err(Error::Unaddressable) => {
  1025. // `NeighborCache` already takes care of rate limiting the neighbor discovery
  1026. // requests from the socket. However, without an additional rate limiting
  1027. // mechanism, we would spin on every socket that has yet to discover its
  1028. // neighbor.
  1029. item.meta.neighbor_missing(
  1030. inner.now,
  1031. neighbor_addr.expect("non-IP response packet"),
  1032. );
  1033. break;
  1034. }
  1035. Err(err) => {
  1036. net_debug!(
  1037. "{}: cannot dispatch egress packet: {}",
  1038. item.meta.handle,
  1039. err
  1040. );
  1041. }
  1042. Ok(()) => {}
  1043. }
  1044. }
  1045. emitted_any
  1046. }
  1047. /// Depending on `igmp_report_state` and the therein contained
  1048. /// timeouts, send IGMP membership reports.
  1049. #[cfg(feature = "proto-igmp")]
  1050. fn igmp_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1051. where
  1052. D: for<'d> Device<'d>,
  1053. {
  1054. match self.inner.igmp_report_state {
  1055. IgmpReportState::ToSpecificQuery {
  1056. version,
  1057. timeout,
  1058. group,
  1059. } if self.inner.now >= timeout => {
  1060. if let Some(pkt) = self.inner.igmp_report_packet(version, group) {
  1061. // Send initial membership report
  1062. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1063. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1064. }
  1065. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1066. Ok(true)
  1067. }
  1068. IgmpReportState::ToGeneralQuery {
  1069. version,
  1070. timeout,
  1071. interval,
  1072. next_index,
  1073. } if self.inner.now >= timeout => {
  1074. let addr = self
  1075. .inner
  1076. .ipv4_multicast_groups
  1077. .iter()
  1078. .nth(next_index)
  1079. .map(|(addr, ())| *addr);
  1080. match addr {
  1081. Some(addr) => {
  1082. if let Some(pkt) = self.inner.igmp_report_packet(version, addr) {
  1083. // Send initial membership report
  1084. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1085. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1086. }
  1087. let next_timeout = (timeout + interval).max(self.inner.now);
  1088. self.inner.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1089. version,
  1090. timeout: next_timeout,
  1091. interval,
  1092. next_index: next_index + 1,
  1093. };
  1094. Ok(true)
  1095. }
  1096. None => {
  1097. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1098. Ok(false)
  1099. }
  1100. }
  1101. }
  1102. _ => Ok(false),
  1103. }
  1104. }
  1105. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1106. fn sixlowpan_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1107. where
  1108. D: for<'d> Device<'d>,
  1109. {
  1110. let SixlowpanOutPacket {
  1111. packet_len,
  1112. sent_bytes,
  1113. ..
  1114. } = &self.out_packets.sixlowpan_out_packet;
  1115. if *packet_len == 0 {
  1116. return Ok(false);
  1117. }
  1118. if *packet_len > *sent_bytes {
  1119. match device.transmit().ok_or(Error::Exhausted) {
  1120. Ok(tx_token) => {
  1121. if let Err(e) = self.inner.dispatch_ieee802154_out_packet(
  1122. tx_token,
  1123. &mut self.out_packets.sixlowpan_out_packet,
  1124. ) {
  1125. net_debug!("failed to transmit: {}", e);
  1126. }
  1127. // Reset the buffer when we transmitted everything.
  1128. if self.out_packets.sixlowpan_out_packet.finished() {
  1129. self.out_packets.sixlowpan_out_packet.reset();
  1130. }
  1131. }
  1132. Err(e) => {
  1133. net_debug!("failed to transmit: {}", e);
  1134. }
  1135. }
  1136. Ok(true)
  1137. } else {
  1138. Ok(false)
  1139. }
  1140. }
  1141. }
  1142. impl<'a> InterfaceInner<'a> {
  1143. #[allow(unused)] // unused depending on which sockets are enabled
  1144. pub(crate) fn now(&self) -> Instant {
  1145. self.now
  1146. }
  1147. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1148. #[allow(unused)] // unused depending on which sockets are enabled
  1149. pub(crate) fn hardware_addr(&self) -> Option<HardwareAddress> {
  1150. self.hardware_addr
  1151. }
  1152. #[allow(unused)] // unused depending on which sockets are enabled
  1153. pub(crate) fn checksum_caps(&self) -> ChecksumCapabilities {
  1154. self.caps.checksum.clone()
  1155. }
  1156. #[allow(unused)] // unused depending on which sockets are enabled
  1157. pub(crate) fn ip_mtu(&self) -> usize {
  1158. self.caps.ip_mtu()
  1159. }
  1160. #[allow(unused)] // unused depending on which sockets are enabled, and in tests
  1161. pub(crate) fn rand(&mut self) -> &mut Rand {
  1162. &mut self.rand
  1163. }
  1164. #[allow(unused)] // unused depending on which sockets are enabled
  1165. pub(crate) fn get_source_address(&mut self, dst_addr: IpAddress) -> Option<IpAddress> {
  1166. let v = dst_addr.version();
  1167. for cidr in self.ip_addrs.iter() {
  1168. let addr = cidr.address();
  1169. if addr.version() == v {
  1170. return Some(addr);
  1171. }
  1172. }
  1173. None
  1174. }
  1175. #[cfg(feature = "proto-ipv4")]
  1176. #[allow(unused)]
  1177. pub(crate) fn get_source_address_ipv4(
  1178. &mut self,
  1179. _dst_addr: Ipv4Address,
  1180. ) -> Option<Ipv4Address> {
  1181. for cidr in self.ip_addrs.iter() {
  1182. #[allow(irrefutable_let_patterns)] // if only ipv4 is enabled
  1183. if let IpCidr::Ipv4(cidr) = cidr {
  1184. return Some(cidr.address());
  1185. }
  1186. }
  1187. None
  1188. }
  1189. #[cfg(feature = "proto-ipv6")]
  1190. #[allow(unused)]
  1191. pub(crate) fn get_source_address_ipv6(
  1192. &mut self,
  1193. _dst_addr: Ipv6Address,
  1194. ) -> Option<Ipv6Address> {
  1195. for cidr in self.ip_addrs.iter() {
  1196. #[allow(irrefutable_let_patterns)] // if only ipv6 is enabled
  1197. if let IpCidr::Ipv6(cidr) = cidr {
  1198. return Some(cidr.address());
  1199. }
  1200. }
  1201. None
  1202. }
  1203. #[cfg(test)]
  1204. pub(crate) fn mock() -> Self {
  1205. Self {
  1206. caps: DeviceCapabilities {
  1207. #[cfg(feature = "medium-ethernet")]
  1208. medium: crate::phy::Medium::Ethernet,
  1209. #[cfg(not(feature = "medium-ethernet"))]
  1210. medium: crate::phy::Medium::Ip,
  1211. checksum: crate::phy::ChecksumCapabilities {
  1212. #[cfg(feature = "proto-ipv4")]
  1213. icmpv4: crate::phy::Checksum::Both,
  1214. #[cfg(feature = "proto-ipv6")]
  1215. icmpv6: crate::phy::Checksum::Both,
  1216. ipv4: crate::phy::Checksum::Both,
  1217. tcp: crate::phy::Checksum::Both,
  1218. udp: crate::phy::Checksum::Both,
  1219. },
  1220. max_burst_size: None,
  1221. #[cfg(feature = "medium-ethernet")]
  1222. max_transmission_unit: 1514,
  1223. #[cfg(not(feature = "medium-ethernet"))]
  1224. max_transmission_unit: 1500,
  1225. },
  1226. now: Instant::from_millis_const(0),
  1227. ip_addrs: ManagedSlice::Owned(vec![
  1228. #[cfg(feature = "proto-ipv4")]
  1229. IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address::new(192, 168, 1, 1), 24)),
  1230. #[cfg(feature = "proto-ipv6")]
  1231. IpCidr::Ipv6(Ipv6Cidr::new(
  1232. Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),
  1233. 64,
  1234. )),
  1235. ]),
  1236. rand: Rand::new(1234),
  1237. routes: Routes::new(&mut [][..]),
  1238. #[cfg(feature = "proto-ipv4")]
  1239. any_ip: false,
  1240. #[cfg(feature = "medium-ieee802154")]
  1241. pan_id: Some(crate::wire::Ieee802154Pan(0xabcd)),
  1242. #[cfg(feature = "medium-ieee802154")]
  1243. sequence_no: 1,
  1244. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1245. tag: 1,
  1246. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1247. hardware_addr: Some(crate::wire::HardwareAddress::Ethernet(
  1248. crate::wire::EthernetAddress([0x02, 0x02, 0x02, 0x02, 0x02, 0x02]),
  1249. )),
  1250. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1251. neighbor_cache: None,
  1252. #[cfg(feature = "proto-igmp")]
  1253. igmp_report_state: IgmpReportState::Inactive,
  1254. #[cfg(feature = "proto-igmp")]
  1255. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  1256. }
  1257. }
  1258. #[cfg(test)]
  1259. #[allow(unused)] // unused depending on which sockets are enabled
  1260. pub(crate) fn set_now(&mut self, now: Instant) {
  1261. self.now = now
  1262. }
  1263. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1264. fn check_hardware_addr(addr: &HardwareAddress) {
  1265. if !addr.is_unicast() {
  1266. panic!("Ethernet address {} is not unicast", addr)
  1267. }
  1268. }
  1269. fn check_ip_addrs(addrs: &[IpCidr]) {
  1270. for cidr in addrs {
  1271. if !cidr.address().is_unicast() && !cidr.address().is_unspecified() {
  1272. panic!("IP address {} is not unicast", cidr.address())
  1273. }
  1274. }
  1275. }
  1276. #[cfg(feature = "medium-ieee802154")]
  1277. fn get_sequence_number(&mut self) -> u8 {
  1278. let no = self.sequence_no;
  1279. self.sequence_no = self.sequence_no.wrapping_add(1);
  1280. no
  1281. }
  1282. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1283. fn get_sixlowpan_fragment_tag(&mut self) -> u16 {
  1284. let tag = self.tag;
  1285. self.tag = self.tag.wrapping_add(1);
  1286. tag
  1287. }
  1288. /// Determine if the given `Ipv6Address` is the solicited node
  1289. /// multicast address for a IPv6 addresses assigned to the interface.
  1290. /// See [RFC 4291 § 2.7.1] for more details.
  1291. ///
  1292. /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
  1293. #[cfg(feature = "proto-ipv6")]
  1294. pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool {
  1295. self.ip_addrs.iter().any(|cidr| {
  1296. match *cidr {
  1297. IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK => {
  1298. // Take the lower order 24 bits of the IPv6 address and
  1299. // append those bits to FF02:0:0:0:0:1:FF00::/104.
  1300. addr.as_bytes()[14..] == cidr.address().as_bytes()[14..]
  1301. }
  1302. _ => false,
  1303. }
  1304. })
  1305. }
  1306. /// Check whether the interface has the given IP address assigned.
  1307. fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1308. let addr = addr.into();
  1309. self.ip_addrs.iter().any(|probe| probe.address() == addr)
  1310. }
  1311. /// Get the first IPv4 address of the interface.
  1312. #[cfg(feature = "proto-ipv4")]
  1313. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  1314. self.ip_addrs.iter().find_map(|addr| match *addr {
  1315. IpCidr::Ipv4(cidr) => Some(cidr.address()),
  1316. #[cfg(feature = "proto-ipv6")]
  1317. IpCidr::Ipv6(_) => None,
  1318. })
  1319. }
  1320. /// Check whether the interface listens to given destination multicast IP address.
  1321. ///
  1322. /// If built without feature `proto-igmp` this function will
  1323. /// always return `false`.
  1324. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1325. match addr.into() {
  1326. #[cfg(feature = "proto-igmp")]
  1327. IpAddress::Ipv4(key) => {
  1328. key == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1329. || self.ipv4_multicast_groups.get(&key).is_some()
  1330. }
  1331. #[allow(unreachable_patterns)]
  1332. _ => false,
  1333. }
  1334. }
  1335. #[cfg(feature = "medium-ethernet")]
  1336. fn process_ethernet<'frame, T: AsRef<[u8]>>(
  1337. &mut self,
  1338. sockets: &mut SocketSet,
  1339. frame: &'frame T,
  1340. _fragments: &'frame mut FragmentsBuffer<'a>,
  1341. ) -> Option<EthernetPacket<'frame>> {
  1342. let eth_frame = check!(EthernetFrame::new_checked(frame));
  1343. // Ignore any packets not directed to our hardware address or any of the multicast groups.
  1344. if !eth_frame.dst_addr().is_broadcast()
  1345. && !eth_frame.dst_addr().is_multicast()
  1346. && HardwareAddress::Ethernet(eth_frame.dst_addr()) != self.hardware_addr.unwrap()
  1347. {
  1348. return None;
  1349. }
  1350. match eth_frame.ethertype() {
  1351. #[cfg(feature = "proto-ipv4")]
  1352. EthernetProtocol::Arp => self.process_arp(self.now, &eth_frame),
  1353. #[cfg(feature = "proto-ipv4")]
  1354. EthernetProtocol::Ipv4 => {
  1355. let ipv4_packet = check!(Ipv4Packet::new_checked(eth_frame.payload()));
  1356. cfg_if::cfg_if! {
  1357. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1358. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1359. .map(EthernetPacket::Ip) } else {
  1360. self.process_ipv4(sockets, &ipv4_packet, None).map(EthernetPacket::Ip)
  1361. }
  1362. }
  1363. }
  1364. #[cfg(feature = "proto-ipv6")]
  1365. EthernetProtocol::Ipv6 => {
  1366. let ipv6_packet = check!(Ipv6Packet::new_checked(eth_frame.payload()));
  1367. self.process_ipv6(sockets, &ipv6_packet)
  1368. .map(EthernetPacket::Ip)
  1369. }
  1370. // Drop all other traffic.
  1371. _ => None,
  1372. }
  1373. }
  1374. #[cfg(feature = "medium-ip")]
  1375. fn process_ip<'frame, T: AsRef<[u8]>>(
  1376. &mut self,
  1377. sockets: &mut SocketSet,
  1378. ip_payload: &'frame T,
  1379. _fragments: &'frame mut FragmentsBuffer<'a>,
  1380. ) -> Option<IpPacket<'frame>> {
  1381. match IpVersion::of_packet(ip_payload.as_ref()) {
  1382. #[cfg(feature = "proto-ipv4")]
  1383. Ok(IpVersion::Ipv4) => {
  1384. let ipv4_packet = check!(Ipv4Packet::new_checked(ip_payload));
  1385. cfg_if::cfg_if! {
  1386. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1387. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1388. } else {
  1389. self.process_ipv4(sockets, &ipv4_packet, None)
  1390. }
  1391. }
  1392. }
  1393. #[cfg(feature = "proto-ipv6")]
  1394. Ok(IpVersion::Ipv6) => {
  1395. let ipv6_packet = check!(Ipv6Packet::new_checked(ip_payload));
  1396. self.process_ipv6(sockets, &ipv6_packet)
  1397. }
  1398. // Drop all other traffic.
  1399. _ => None,
  1400. }
  1401. }
  1402. #[cfg(feature = "medium-ieee802154")]
  1403. fn process_ieee802154<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1404. &mut self,
  1405. sockets: &mut SocketSet,
  1406. sixlowpan_payload: &'payload T,
  1407. _fragments: &'output mut FragmentsBuffer<'a>,
  1408. ) -> Option<IpPacket<'output>> {
  1409. let ieee802154_frame = check!(Ieee802154Frame::new_checked(sixlowpan_payload));
  1410. let ieee802154_repr = check!(Ieee802154Repr::parse(&ieee802154_frame));
  1411. if ieee802154_repr.frame_type != Ieee802154FrameType::Data {
  1412. return None;
  1413. }
  1414. // Drop frames when the user has set a PAN id and the PAN id from frame is not equal to this
  1415. // When the user didn't set a PAN id (so it is None), then we accept all PAN id's.
  1416. // We always accept the broadcast PAN id.
  1417. if self.pan_id.is_some()
  1418. && ieee802154_repr.dst_pan_id != self.pan_id
  1419. && ieee802154_repr.dst_pan_id != Some(Ieee802154Pan::BROADCAST)
  1420. {
  1421. net_debug!(
  1422. "IEEE802.15.4: dropping {:?} because not our PAN id (or not broadcast)",
  1423. ieee802154_repr
  1424. );
  1425. return None;
  1426. }
  1427. match ieee802154_frame.payload() {
  1428. Some(payload) => {
  1429. cfg_if::cfg_if! {
  1430. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  1431. self.process_sixlowpan(sockets, &ieee802154_repr, payload, Some(&mut _fragments.sixlowpan_fragments))
  1432. } else {
  1433. self.process_sixlowpan(sockets, &ieee802154_repr, payload, None)
  1434. }
  1435. }
  1436. }
  1437. None => None,
  1438. }
  1439. }
  1440. #[cfg(feature = "proto-sixlowpan")]
  1441. fn process_sixlowpan<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1442. &mut self,
  1443. sockets: &mut SocketSet,
  1444. ieee802154_repr: &Ieee802154Repr,
  1445. payload: &'payload T,
  1446. _fragments: Option<&'output mut PacketAssemblerSet<'a, SixlowpanFragKey>>,
  1447. ) -> Option<IpPacket<'output>> {
  1448. let payload = match check!(SixlowpanPacket::dispatch(payload)) {
  1449. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  1450. SixlowpanPacket::FragmentHeader => {
  1451. net_debug!("Fragmentation is not supported, use the `proto-sixlowpan-fragmentation` feature to add support.");
  1452. return None;
  1453. }
  1454. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1455. SixlowpanPacket::FragmentHeader => {
  1456. let fragments = _fragments.unwrap();
  1457. // We have a fragment header, which means we cannot process the 6LoWPAN packet,
  1458. // unless we have a complete one after processing this fragment.
  1459. let frag = check!(SixlowpanFragPacket::new_checked(payload));
  1460. // The key specifies to which 6LoWPAN fragment it belongs too.
  1461. // It is based on the link layer addresses, the tag and the size.
  1462. let key = frag.get_key(ieee802154_repr);
  1463. // The offset of this fragment in increments of 8 octets.
  1464. let offset = frag.datagram_offset() as usize * 8;
  1465. if frag.is_first_fragment() {
  1466. // The first fragment contains the total size of the IPv6 packet.
  1467. // However, we received a packet that is compressed following the 6LoWPAN
  1468. // standard. This means we need to convert the IPv6 packet size to a 6LoWPAN
  1469. // packet size. The packet size can be different because of first the
  1470. // compression of the IP header and when UDP is used (because the UDP header
  1471. // can also be compressed). Other headers are not compressed by 6LoWPAN.
  1472. let iphc = check!(SixlowpanIphcPacket::new_checked(frag.payload()));
  1473. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1474. &iphc,
  1475. ieee802154_repr.src_addr,
  1476. ieee802154_repr.dst_addr,
  1477. ));
  1478. // The uncompressed header size always starts with 40, since this is the size
  1479. // of a IPv6 header.
  1480. let mut uncompressed_header_size = 40;
  1481. let mut compressed_header_size = iphc.header_len();
  1482. // We need to check if we have an UDP packet, since this header can also be
  1483. // compressed by 6LoWPAN. We currently don't support extension headers yet.
  1484. match iphc_repr.next_header {
  1485. SixlowpanNextHeader::Compressed => {
  1486. match check!(SixlowpanNhcPacket::dispatch(iphc.payload())) {
  1487. SixlowpanNhcPacket::ExtHeader => {
  1488. net_debug!("6LoWPAN: extension headers not supported");
  1489. return None;
  1490. }
  1491. SixlowpanNhcPacket::UdpHeader => {
  1492. let udp_packet =
  1493. check!(SixlowpanUdpNhcPacket::new_checked(iphc.payload()));
  1494. uncompressed_header_size += 8;
  1495. compressed_header_size +=
  1496. 1 + udp_packet.ports_size() + udp_packet.checksum_size();
  1497. }
  1498. }
  1499. }
  1500. SixlowpanNextHeader::Uncompressed(_) => (),
  1501. }
  1502. // We reserve a spot in the packet assembler set and add the required
  1503. // information to the packet assembler.
  1504. // This information is the total size of the packet when it is fully assmbled.
  1505. // We also pass the header size, since this is needed when other fragments
  1506. // (other than the first one) are added.
  1507. check!(check!(fragments.reserve_with_key(&key)).start(
  1508. Some(
  1509. frag.datagram_size() as usize - uncompressed_header_size
  1510. + compressed_header_size
  1511. ),
  1512. self.now + Duration::from_secs(60),
  1513. -((uncompressed_header_size - compressed_header_size) as isize),
  1514. ));
  1515. }
  1516. let frags = check!(fragments.get_packet_assembler_mut(&key));
  1517. net_trace!("6LoWPAN: received packet fragment");
  1518. // Add the fragment to the packet assembler.
  1519. match frags.add(frag.payload(), offset) {
  1520. Ok(true) => {
  1521. net_trace!("6LoWPAN: fragmented packet now complete");
  1522. check!(fragments.get_assembled_packet(&key))
  1523. }
  1524. Ok(false) => {
  1525. return None;
  1526. }
  1527. Err(Error::PacketAssemblerOverlap) => {
  1528. net_trace!("6LoWPAN: overlap in packet");
  1529. frags.mark_discarded();
  1530. return None;
  1531. }
  1532. Err(_) => return None,
  1533. }
  1534. }
  1535. SixlowpanPacket::IphcHeader => payload.as_ref(),
  1536. };
  1537. // At this point we should have a valid 6LoWPAN packet.
  1538. // The first header needs to be an IPHC header.
  1539. let iphc_packet = check!(SixlowpanIphcPacket::new_checked(payload));
  1540. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1541. &iphc_packet,
  1542. ieee802154_repr.src_addr,
  1543. ieee802154_repr.dst_addr,
  1544. ));
  1545. let payload = iphc_packet.payload();
  1546. let mut ipv6_repr = Ipv6Repr {
  1547. src_addr: iphc_repr.src_addr,
  1548. dst_addr: iphc_repr.dst_addr,
  1549. hop_limit: iphc_repr.hop_limit,
  1550. next_header: IpProtocol::Unknown(0),
  1551. payload_len: 40,
  1552. };
  1553. match iphc_repr.next_header {
  1554. SixlowpanNextHeader::Compressed => {
  1555. match check!(SixlowpanNhcPacket::dispatch(payload)) {
  1556. SixlowpanNhcPacket::ExtHeader => {
  1557. net_debug!("Extension headers are currently not supported for 6LoWPAN");
  1558. None
  1559. }
  1560. #[cfg(not(feature = "socket-udp"))]
  1561. SixlowpanNhcPacket::UdpHeader => {
  1562. net_debug!("UDP support is disabled, enable cargo feature `socket-udp`.");
  1563. None
  1564. }
  1565. #[cfg(feature = "socket-udp")]
  1566. SixlowpanNhcPacket::UdpHeader => {
  1567. let udp_packet = check!(SixlowpanUdpNhcPacket::new_checked(payload));
  1568. ipv6_repr.next_header = IpProtocol::Udp;
  1569. ipv6_repr.payload_len += 8 + udp_packet.payload().len();
  1570. let udp_repr = check!(SixlowpanUdpNhcRepr::parse(
  1571. &udp_packet,
  1572. &iphc_repr.src_addr,
  1573. &iphc_repr.dst_addr,
  1574. ));
  1575. // Look for UDP sockets that will accept the UDP packet.
  1576. // If it does not accept the packet, then send an ICMP message.
  1577. //
  1578. // NOTE(thvdveld): this is currently the same code as in self.process_udp.
  1579. // However, we cannot use that one because the payload passed to it is a
  1580. // normal IPv6 UDP payload, which is not what we have here.
  1581. for udp_socket in sockets
  1582. .items_mut()
  1583. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  1584. {
  1585. if udp_socket.accepts(self, &IpRepr::Ipv6(ipv6_repr), &udp_repr) {
  1586. udp_socket.process(
  1587. self,
  1588. &IpRepr::Ipv6(ipv6_repr),
  1589. &udp_repr,
  1590. udp_packet.payload(),
  1591. );
  1592. return None;
  1593. }
  1594. }
  1595. // When we are here then then there was no UDP socket that accepted the UDP
  1596. // message.
  1597. let payload_len = icmp_reply_payload_len(
  1598. payload.len(),
  1599. IPV6_MIN_MTU,
  1600. ipv6_repr.buffer_len(),
  1601. );
  1602. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  1603. reason: Icmpv6DstUnreachable::PortUnreachable,
  1604. header: ipv6_repr,
  1605. data: &payload[0..payload_len],
  1606. };
  1607. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  1608. }
  1609. }
  1610. }
  1611. SixlowpanNextHeader::Uncompressed(nxt_hdr) => match nxt_hdr {
  1612. IpProtocol::Icmpv6 => {
  1613. ipv6_repr.next_header = IpProtocol::Icmpv6;
  1614. self.process_icmpv6(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1615. }
  1616. #[cfg(feature = "socket-tcp")]
  1617. IpProtocol::Tcp => {
  1618. ipv6_repr.next_header = nxt_hdr;
  1619. ipv6_repr.payload_len += payload.len();
  1620. self.process_tcp(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1621. }
  1622. proto => {
  1623. net_debug!("6LoWPAN: {} currently not supported", proto);
  1624. None
  1625. }
  1626. },
  1627. }
  1628. }
  1629. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  1630. fn process_arp<'frame, T: AsRef<[u8]>>(
  1631. &mut self,
  1632. timestamp: Instant,
  1633. eth_frame: &EthernetFrame<&'frame T>,
  1634. ) -> Option<EthernetPacket<'frame>> {
  1635. let arp_packet = check!(ArpPacket::new_checked(eth_frame.payload()));
  1636. let arp_repr = check!(ArpRepr::parse(&arp_packet));
  1637. match arp_repr {
  1638. ArpRepr::EthernetIpv4 {
  1639. operation,
  1640. source_hardware_addr,
  1641. source_protocol_addr,
  1642. target_protocol_addr,
  1643. ..
  1644. } => {
  1645. // Only process ARP packets for us.
  1646. if !self.has_ip_addr(target_protocol_addr) {
  1647. return None;
  1648. }
  1649. // Only process REQUEST and RESPONSE.
  1650. if let ArpOperation::Unknown(_) = operation {
  1651. net_debug!("arp: unknown operation code");
  1652. return None;
  1653. }
  1654. // Discard packets with non-unicast source addresses.
  1655. if !source_protocol_addr.is_unicast() || !source_hardware_addr.is_unicast() {
  1656. net_debug!("arp: non-unicast source address");
  1657. return None;
  1658. }
  1659. if !self.in_same_network(&IpAddress::Ipv4(source_protocol_addr)) {
  1660. net_debug!("arp: source IP address not in same network as us");
  1661. return None;
  1662. }
  1663. // Fill the ARP cache from any ARP packet aimed at us (both request or response).
  1664. // We fill from requests too because if someone is requesting our address they
  1665. // are probably going to talk to us, so we avoid having to request their address
  1666. // when we later reply to them.
  1667. self.neighbor_cache.as_mut().unwrap().fill(
  1668. source_protocol_addr.into(),
  1669. source_hardware_addr.into(),
  1670. timestamp,
  1671. );
  1672. if operation == ArpOperation::Request {
  1673. let src_hardware_addr = match self.hardware_addr {
  1674. Some(HardwareAddress::Ethernet(addr)) => addr,
  1675. _ => unreachable!(),
  1676. };
  1677. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  1678. operation: ArpOperation::Reply,
  1679. source_hardware_addr: src_hardware_addr,
  1680. source_protocol_addr: target_protocol_addr,
  1681. target_hardware_addr: source_hardware_addr,
  1682. target_protocol_addr: source_protocol_addr,
  1683. }))
  1684. } else {
  1685. None
  1686. }
  1687. }
  1688. }
  1689. }
  1690. #[cfg(feature = "socket-raw")]
  1691. fn raw_socket_filter<'frame>(
  1692. &mut self,
  1693. sockets: &mut SocketSet,
  1694. ip_repr: &IpRepr,
  1695. ip_payload: &'frame [u8],
  1696. ) -> bool {
  1697. let mut handled_by_raw_socket = false;
  1698. // Pass every IP packet to all raw sockets we have registered.
  1699. for raw_socket in sockets
  1700. .items_mut()
  1701. .filter_map(|i| raw::Socket::downcast_mut(&mut i.socket))
  1702. {
  1703. if raw_socket.accepts(ip_repr) {
  1704. raw_socket.process(self, ip_repr, ip_payload);
  1705. handled_by_raw_socket = true;
  1706. }
  1707. }
  1708. handled_by_raw_socket
  1709. }
  1710. #[cfg(feature = "proto-ipv6")]
  1711. fn process_ipv6<'frame, T: AsRef<[u8]> + ?Sized>(
  1712. &mut self,
  1713. sockets: &mut SocketSet,
  1714. ipv6_packet: &Ipv6Packet<&'frame T>,
  1715. ) -> Option<IpPacket<'frame>> {
  1716. let ipv6_repr = check!(Ipv6Repr::parse(ipv6_packet));
  1717. if !ipv6_repr.src_addr.is_unicast() {
  1718. // Discard packets with non-unicast source addresses.
  1719. net_debug!("non-unicast source address");
  1720. return None;
  1721. }
  1722. let ip_payload = ipv6_packet.payload();
  1723. #[cfg(feature = "socket-raw")]
  1724. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ipv6_repr.into(), ip_payload);
  1725. #[cfg(not(feature = "socket-raw"))]
  1726. let handled_by_raw_socket = false;
  1727. self.process_nxt_hdr(
  1728. sockets,
  1729. ipv6_repr,
  1730. ipv6_repr.next_header,
  1731. handled_by_raw_socket,
  1732. ip_payload,
  1733. )
  1734. }
  1735. /// Given the next header value forward the payload onto the correct process
  1736. /// function.
  1737. #[cfg(feature = "proto-ipv6")]
  1738. fn process_nxt_hdr<'frame>(
  1739. &mut self,
  1740. sockets: &mut SocketSet,
  1741. ipv6_repr: Ipv6Repr,
  1742. nxt_hdr: IpProtocol,
  1743. handled_by_raw_socket: bool,
  1744. ip_payload: &'frame [u8],
  1745. ) -> Option<IpPacket<'frame>> {
  1746. match nxt_hdr {
  1747. IpProtocol::Icmpv6 => self.process_icmpv6(sockets, ipv6_repr.into(), ip_payload),
  1748. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1749. IpProtocol::Udp => {
  1750. self.process_udp(sockets, ipv6_repr.into(), handled_by_raw_socket, ip_payload)
  1751. }
  1752. #[cfg(feature = "socket-tcp")]
  1753. IpProtocol::Tcp => self.process_tcp(sockets, ipv6_repr.into(), ip_payload),
  1754. IpProtocol::HopByHop => {
  1755. self.process_hopbyhop(sockets, ipv6_repr, handled_by_raw_socket, ip_payload)
  1756. }
  1757. #[cfg(feature = "socket-raw")]
  1758. _ if handled_by_raw_socket => None,
  1759. _ => {
  1760. // Send back as much of the original payload as we can.
  1761. let payload_len =
  1762. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  1763. let icmp_reply_repr = Icmpv6Repr::ParamProblem {
  1764. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  1765. // The offending packet is after the IPv6 header.
  1766. pointer: ipv6_repr.buffer_len() as u32,
  1767. header: ipv6_repr,
  1768. data: &ip_payload[0..payload_len],
  1769. };
  1770. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  1771. }
  1772. }
  1773. }
  1774. #[cfg(feature = "proto-ipv4")]
  1775. fn process_ipv4<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1776. &mut self,
  1777. sockets: &mut SocketSet,
  1778. ipv4_packet: &Ipv4Packet<&'payload T>,
  1779. _fragments: Option<&'output mut PacketAssemblerSet<'a, Ipv4FragKey>>,
  1780. ) -> Option<IpPacket<'output>> {
  1781. let ipv4_repr = check!(Ipv4Repr::parse(ipv4_packet, &self.caps.checksum));
  1782. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  1783. // Discard packets with non-unicast source addresses.
  1784. net_debug!("non-unicast source address");
  1785. return None;
  1786. }
  1787. #[cfg(feature = "proto-ipv4-fragmentation")]
  1788. let ip_payload = {
  1789. const REASSEMBLY_TIMEOUT: u64 = 90;
  1790. let fragments = _fragments.unwrap();
  1791. if ipv4_packet.more_frags() || ipv4_packet.frag_offset() != 0 {
  1792. let key = ipv4_packet.get_key();
  1793. let f = match fragments.get_packet_assembler_mut(&key) {
  1794. Ok(f) => f,
  1795. Err(_) => {
  1796. check!(check!(fragments.reserve_with_key(&key)).start(
  1797. None,
  1798. self.now + Duration::from_secs(REASSEMBLY_TIMEOUT),
  1799. 0,
  1800. ));
  1801. check!(fragments.get_packet_assembler_mut(&key))
  1802. }
  1803. };
  1804. if !ipv4_packet.more_frags() {
  1805. // This is the last fragment, so we know the total size
  1806. check!(f.set_total_size(
  1807. ipv4_packet.total_len() as usize - ipv4_packet.header_len() as usize
  1808. + ipv4_packet.frag_offset() as usize,
  1809. ));
  1810. }
  1811. match f.add(ipv4_packet.payload(), ipv4_packet.frag_offset() as usize) {
  1812. Ok(true) => {
  1813. // NOTE: according to the standard, the total length needs to be
  1814. // recomputed, as well as the checksum. However, we don't really use
  1815. // the IPv4 header after the packet is reassembled.
  1816. check!(fragments.get_assembled_packet(&key))
  1817. }
  1818. Ok(false) => {
  1819. return None;
  1820. }
  1821. Err(Error::PacketAssemblerOverlap) => {
  1822. return None;
  1823. }
  1824. Err(e) => {
  1825. net_debug!("fragmentation error: {}", e);
  1826. return None;
  1827. }
  1828. }
  1829. } else {
  1830. ipv4_packet.payload()
  1831. }
  1832. };
  1833. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  1834. let ip_payload = ipv4_packet.payload();
  1835. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  1836. #[cfg(feature = "socket-raw")]
  1837. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ip_repr, ip_payload);
  1838. #[cfg(not(feature = "socket-raw"))]
  1839. let handled_by_raw_socket = false;
  1840. #[cfg(feature = "socket-dhcpv4")]
  1841. {
  1842. if ipv4_repr.next_header == IpProtocol::Udp && self.hardware_addr.is_some() {
  1843. // First check for source and dest ports, then do `UdpRepr::parse` if they match.
  1844. // This way we avoid validating the UDP checksum twice for all non-DHCP UDP packets (one here, one in `process_udp`)
  1845. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  1846. if udp_packet.src_port() == DHCP_SERVER_PORT
  1847. && udp_packet.dst_port() == DHCP_CLIENT_PORT
  1848. {
  1849. if let Some(dhcp_socket) = sockets
  1850. .items_mut()
  1851. .find_map(|i| dhcpv4::Socket::downcast_mut(&mut i.socket))
  1852. {
  1853. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  1854. let udp_repr = check!(UdpRepr::parse(
  1855. &udp_packet,
  1856. &src_addr,
  1857. &dst_addr,
  1858. &self.caps.checksum
  1859. ));
  1860. let udp_payload = udp_packet.payload();
  1861. dhcp_socket.process(self, &ipv4_repr, &udp_repr, udp_payload);
  1862. return None;
  1863. }
  1864. }
  1865. }
  1866. }
  1867. if !self.has_ip_addr(ipv4_repr.dst_addr)
  1868. && !self.has_multicast_group(ipv4_repr.dst_addr)
  1869. && !self.is_broadcast_v4(ipv4_repr.dst_addr)
  1870. {
  1871. // Ignore IP packets not directed at us, or broadcast, or any of the multicast groups.
  1872. // If AnyIP is enabled, also check if the packet is routed locally.
  1873. if !self.any_ip
  1874. || !ipv4_repr.dst_addr.is_unicast()
  1875. || self
  1876. .routes
  1877. .lookup(&IpAddress::Ipv4(ipv4_repr.dst_addr), self.now)
  1878. .map_or(true, |router_addr| !self.has_ip_addr(router_addr))
  1879. {
  1880. return None;
  1881. }
  1882. }
  1883. match ipv4_repr.next_header {
  1884. IpProtocol::Icmp => self.process_icmpv4(sockets, ip_repr, ip_payload),
  1885. #[cfg(feature = "proto-igmp")]
  1886. IpProtocol::Igmp => self.process_igmp(ipv4_repr, ip_payload),
  1887. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1888. IpProtocol::Udp => {
  1889. self.process_udp(sockets, ip_repr, handled_by_raw_socket, ip_payload)
  1890. }
  1891. #[cfg(feature = "socket-tcp")]
  1892. IpProtocol::Tcp => self.process_tcp(sockets, ip_repr, ip_payload),
  1893. _ if handled_by_raw_socket => None,
  1894. _ => {
  1895. // Send back as much of the original payload as we can.
  1896. let payload_len =
  1897. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  1898. let icmp_reply_repr = Icmpv4Repr::DstUnreachable {
  1899. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  1900. header: ipv4_repr,
  1901. data: &ip_payload[0..payload_len],
  1902. };
  1903. self.icmpv4_reply(ipv4_repr, icmp_reply_repr)
  1904. }
  1905. }
  1906. }
  1907. /// Checks if an incoming packet has a broadcast address for the interfaces
  1908. /// associated ipv4 addresses.
  1909. #[cfg(feature = "proto-ipv4")]
  1910. fn is_subnet_broadcast(&self, address: Ipv4Address) -> bool {
  1911. self.ip_addrs
  1912. .iter()
  1913. .filter_map(|own_cidr| match own_cidr {
  1914. IpCidr::Ipv4(own_ip) => Some(own_ip.broadcast()?),
  1915. #[cfg(feature = "proto-ipv6")]
  1916. IpCidr::Ipv6(_) => None,
  1917. })
  1918. .any(|broadcast_address| address == broadcast_address)
  1919. }
  1920. /// Checks if an ipv4 address is broadcast, taking into account subnet broadcast addresses
  1921. #[cfg(feature = "proto-ipv4")]
  1922. fn is_broadcast_v4(&self, address: Ipv4Address) -> bool {
  1923. address.is_broadcast() || self.is_subnet_broadcast(address)
  1924. }
  1925. /// Checks if an ipv4 address is unicast, taking into account subnet broadcast addresses
  1926. #[cfg(feature = "proto-ipv4")]
  1927. fn is_unicast_v4(&self, address: Ipv4Address) -> bool {
  1928. address.is_unicast() && !self.is_subnet_broadcast(address)
  1929. }
  1930. /// Host duties of the **IGMPv2** protocol.
  1931. ///
  1932. /// Sets up `igmp_report_state` for responding to IGMP general/specific membership queries.
  1933. /// Membership must not be reported immediately in order to avoid flooding the network
  1934. /// after a query is broadcasted by a router; this is not currently done.
  1935. #[cfg(feature = "proto-igmp")]
  1936. fn process_igmp<'frame>(
  1937. &mut self,
  1938. ipv4_repr: Ipv4Repr,
  1939. ip_payload: &'frame [u8],
  1940. ) -> Option<IpPacket<'frame>> {
  1941. let igmp_packet = check!(IgmpPacket::new_checked(ip_payload));
  1942. let igmp_repr = check!(IgmpRepr::parse(&igmp_packet));
  1943. // FIXME: report membership after a delay
  1944. match igmp_repr {
  1945. IgmpRepr::MembershipQuery {
  1946. group_addr,
  1947. version,
  1948. max_resp_time,
  1949. } => {
  1950. // General query
  1951. if group_addr.is_unspecified()
  1952. && ipv4_repr.dst_addr == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1953. {
  1954. // Are we member in any groups?
  1955. if self.ipv4_multicast_groups.iter().next().is_some() {
  1956. let interval = match version {
  1957. IgmpVersion::Version1 => Duration::from_millis(100),
  1958. IgmpVersion::Version2 => {
  1959. // No dependence on a random generator
  1960. // (see [#24](https://github.com/m-labs/smoltcp/issues/24))
  1961. // but at least spread reports evenly across max_resp_time.
  1962. let intervals = self.ipv4_multicast_groups.len() as u32 + 1;
  1963. max_resp_time / intervals
  1964. }
  1965. };
  1966. self.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1967. version,
  1968. timeout: self.now + interval,
  1969. interval,
  1970. next_index: 0,
  1971. };
  1972. }
  1973. } else {
  1974. // Group-specific query
  1975. if self.has_multicast_group(group_addr) && ipv4_repr.dst_addr == group_addr {
  1976. // Don't respond immediately
  1977. let timeout = max_resp_time / 4;
  1978. self.igmp_report_state = IgmpReportState::ToSpecificQuery {
  1979. version,
  1980. timeout: self.now + timeout,
  1981. group: group_addr,
  1982. };
  1983. }
  1984. }
  1985. }
  1986. // Ignore membership reports
  1987. IgmpRepr::MembershipReport { .. } => (),
  1988. // Ignore hosts leaving groups
  1989. IgmpRepr::LeaveGroup { .. } => (),
  1990. }
  1991. None
  1992. }
  1993. #[cfg(feature = "proto-ipv6")]
  1994. fn process_icmpv6<'frame>(
  1995. &mut self,
  1996. _sockets: &mut SocketSet,
  1997. ip_repr: IpRepr,
  1998. ip_payload: &'frame [u8],
  1999. ) -> Option<IpPacket<'frame>> {
  2000. let icmp_packet = check!(Icmpv6Packet::new_checked(ip_payload));
  2001. let icmp_repr = check!(Icmpv6Repr::parse(
  2002. &ip_repr.src_addr(),
  2003. &ip_repr.dst_addr(),
  2004. &icmp_packet,
  2005. &self.caps.checksum,
  2006. ));
  2007. #[cfg(feature = "socket-icmp")]
  2008. let mut handled_by_icmp_socket = false;
  2009. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv6"))]
  2010. for icmp_socket in _sockets
  2011. .items_mut()
  2012. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2013. {
  2014. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2015. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2016. handled_by_icmp_socket = true;
  2017. }
  2018. }
  2019. match icmp_repr {
  2020. // Respond to echo requests.
  2021. Icmpv6Repr::EchoRequest {
  2022. ident,
  2023. seq_no,
  2024. data,
  2025. } => match ip_repr {
  2026. IpRepr::Ipv6(ipv6_repr) => {
  2027. let icmp_reply_repr = Icmpv6Repr::EchoReply {
  2028. ident,
  2029. seq_no,
  2030. data,
  2031. };
  2032. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  2033. }
  2034. #[allow(unreachable_patterns)]
  2035. _ => unreachable!(),
  2036. },
  2037. // Ignore any echo replies.
  2038. Icmpv6Repr::EchoReply { .. } => None,
  2039. // Forward any NDISC packets to the ndisc packet handler
  2040. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2041. Icmpv6Repr::Ndisc(repr) if ip_repr.hop_limit() == 0xff => match ip_repr {
  2042. IpRepr::Ipv6(ipv6_repr) => self.process_ndisc(ipv6_repr, repr),
  2043. #[allow(unreachable_patterns)]
  2044. _ => unreachable!(),
  2045. },
  2046. // Don't report an error if a packet with unknown type
  2047. // has been handled by an ICMP socket
  2048. #[cfg(feature = "socket-icmp")]
  2049. _ if handled_by_icmp_socket => None,
  2050. // FIXME: do something correct here?
  2051. _ => None,
  2052. }
  2053. }
  2054. #[cfg(all(
  2055. any(feature = "medium-ethernet", feature = "medium-ieee802154"),
  2056. feature = "proto-ipv6"
  2057. ))]
  2058. fn process_ndisc<'frame>(
  2059. &mut self,
  2060. ip_repr: Ipv6Repr,
  2061. repr: NdiscRepr<'frame>,
  2062. ) -> Option<IpPacket<'frame>> {
  2063. match repr {
  2064. NdiscRepr::NeighborAdvert {
  2065. lladdr,
  2066. target_addr,
  2067. flags,
  2068. } => {
  2069. let ip_addr = ip_repr.src_addr.into();
  2070. if let Some(lladdr) = lladdr {
  2071. let lladdr = check!(lladdr.parse(self.caps.medium));
  2072. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2073. return None;
  2074. }
  2075. if flags.contains(NdiscNeighborFlags::OVERRIDE)
  2076. || !self
  2077. .neighbor_cache
  2078. .as_mut()
  2079. .unwrap()
  2080. .lookup(&ip_addr, self.now)
  2081. .found()
  2082. {
  2083. self.neighbor_cache
  2084. .as_mut()
  2085. .unwrap()
  2086. .fill(ip_addr, lladdr, self.now)
  2087. }
  2088. }
  2089. None
  2090. }
  2091. NdiscRepr::NeighborSolicit {
  2092. target_addr,
  2093. lladdr,
  2094. ..
  2095. } => {
  2096. if let Some(lladdr) = lladdr {
  2097. let lladdr = check!(lladdr.parse(self.caps.medium));
  2098. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2099. return None;
  2100. }
  2101. self.neighbor_cache.as_mut().unwrap().fill(
  2102. ip_repr.src_addr.into(),
  2103. lladdr,
  2104. self.now,
  2105. );
  2106. }
  2107. if self.has_solicited_node(ip_repr.dst_addr) && self.has_ip_addr(target_addr) {
  2108. let advert = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  2109. flags: NdiscNeighborFlags::SOLICITED,
  2110. target_addr,
  2111. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2112. lladdr: Some(self.hardware_addr.unwrap().into()),
  2113. });
  2114. let ip_repr = Ipv6Repr {
  2115. src_addr: target_addr,
  2116. dst_addr: ip_repr.src_addr,
  2117. next_header: IpProtocol::Icmpv6,
  2118. hop_limit: 0xff,
  2119. payload_len: advert.buffer_len(),
  2120. };
  2121. Some(IpPacket::Icmpv6((ip_repr, advert)))
  2122. } else {
  2123. None
  2124. }
  2125. }
  2126. _ => None,
  2127. }
  2128. }
  2129. #[cfg(feature = "proto-ipv6")]
  2130. fn process_hopbyhop<'frame>(
  2131. &mut self,
  2132. sockets: &mut SocketSet,
  2133. ipv6_repr: Ipv6Repr,
  2134. handled_by_raw_socket: bool,
  2135. ip_payload: &'frame [u8],
  2136. ) -> Option<IpPacket<'frame>> {
  2137. let hbh_pkt = check!(Ipv6HopByHopHeader::new_checked(ip_payload));
  2138. let hbh_repr = check!(Ipv6HopByHopRepr::parse(&hbh_pkt));
  2139. for opt_repr in hbh_repr.options() {
  2140. let opt_repr = check!(opt_repr);
  2141. match opt_repr {
  2142. Ipv6OptionRepr::Pad1 | Ipv6OptionRepr::PadN(_) => (),
  2143. Ipv6OptionRepr::Unknown { type_, .. } => {
  2144. match Ipv6OptionFailureType::from(type_) {
  2145. Ipv6OptionFailureType::Skip => (),
  2146. Ipv6OptionFailureType::Discard => {
  2147. return None;
  2148. }
  2149. _ => {
  2150. // FIXME(dlrobertson): Send an ICMPv6 parameter problem message
  2151. // here.
  2152. return None;
  2153. }
  2154. }
  2155. }
  2156. }
  2157. }
  2158. self.process_nxt_hdr(
  2159. sockets,
  2160. ipv6_repr,
  2161. hbh_repr.next_header,
  2162. handled_by_raw_socket,
  2163. &ip_payload[hbh_repr.buffer_len()..],
  2164. )
  2165. }
  2166. #[cfg(feature = "proto-ipv4")]
  2167. fn process_icmpv4<'frame>(
  2168. &mut self,
  2169. _sockets: &mut SocketSet,
  2170. ip_repr: IpRepr,
  2171. ip_payload: &'frame [u8],
  2172. ) -> Option<IpPacket<'frame>> {
  2173. let icmp_packet = check!(Icmpv4Packet::new_checked(ip_payload));
  2174. let icmp_repr = check!(Icmpv4Repr::parse(&icmp_packet, &self.caps.checksum));
  2175. #[cfg(feature = "socket-icmp")]
  2176. let mut handled_by_icmp_socket = false;
  2177. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  2178. for icmp_socket in _sockets
  2179. .items_mut()
  2180. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2181. {
  2182. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2183. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2184. handled_by_icmp_socket = true;
  2185. }
  2186. }
  2187. match icmp_repr {
  2188. // Respond to echo requests.
  2189. #[cfg(feature = "proto-ipv4")]
  2190. Icmpv4Repr::EchoRequest {
  2191. ident,
  2192. seq_no,
  2193. data,
  2194. } => {
  2195. let icmp_reply_repr = Icmpv4Repr::EchoReply {
  2196. ident,
  2197. seq_no,
  2198. data,
  2199. };
  2200. match ip_repr {
  2201. IpRepr::Ipv4(ipv4_repr) => self.icmpv4_reply(ipv4_repr, icmp_reply_repr),
  2202. #[allow(unreachable_patterns)]
  2203. _ => unreachable!(),
  2204. }
  2205. }
  2206. // Ignore any echo replies.
  2207. Icmpv4Repr::EchoReply { .. } => None,
  2208. // Don't report an error if a packet with unknown type
  2209. // has been handled by an ICMP socket
  2210. #[cfg(feature = "socket-icmp")]
  2211. _ if handled_by_icmp_socket => None,
  2212. // FIXME: do something correct here?
  2213. _ => None,
  2214. }
  2215. }
  2216. #[cfg(feature = "proto-ipv4")]
  2217. fn icmpv4_reply<'frame, 'icmp: 'frame>(
  2218. &self,
  2219. ipv4_repr: Ipv4Repr,
  2220. icmp_repr: Icmpv4Repr<'icmp>,
  2221. ) -> Option<IpPacket<'frame>> {
  2222. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  2223. // Do not send ICMP replies to non-unicast sources
  2224. None
  2225. } else if self.is_unicast_v4(ipv4_repr.dst_addr) {
  2226. // Reply as normal when src_addr and dst_addr are both unicast
  2227. let ipv4_reply_repr = Ipv4Repr {
  2228. src_addr: ipv4_repr.dst_addr,
  2229. dst_addr: ipv4_repr.src_addr,
  2230. next_header: IpProtocol::Icmp,
  2231. payload_len: icmp_repr.buffer_len(),
  2232. hop_limit: 64,
  2233. };
  2234. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2235. } else if self.is_broadcast_v4(ipv4_repr.dst_addr) {
  2236. // Only reply to broadcasts for echo replies and not other ICMP messages
  2237. match icmp_repr {
  2238. Icmpv4Repr::EchoReply { .. } => match self.ipv4_address() {
  2239. Some(src_addr) => {
  2240. let ipv4_reply_repr = Ipv4Repr {
  2241. src_addr,
  2242. dst_addr: ipv4_repr.src_addr,
  2243. next_header: IpProtocol::Icmp,
  2244. payload_len: icmp_repr.buffer_len(),
  2245. hop_limit: 64,
  2246. };
  2247. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2248. }
  2249. None => None,
  2250. },
  2251. _ => None,
  2252. }
  2253. } else {
  2254. None
  2255. }
  2256. }
  2257. #[cfg(feature = "proto-ipv6")]
  2258. fn icmpv6_reply<'frame, 'icmp: 'frame>(
  2259. &self,
  2260. ipv6_repr: Ipv6Repr,
  2261. icmp_repr: Icmpv6Repr<'icmp>,
  2262. ) -> Option<IpPacket<'frame>> {
  2263. if ipv6_repr.dst_addr.is_unicast() {
  2264. let ipv6_reply_repr = Ipv6Repr {
  2265. src_addr: ipv6_repr.dst_addr,
  2266. dst_addr: ipv6_repr.src_addr,
  2267. next_header: IpProtocol::Icmpv6,
  2268. payload_len: icmp_repr.buffer_len(),
  2269. hop_limit: 64,
  2270. };
  2271. Some(IpPacket::Icmpv6((ipv6_reply_repr, icmp_repr)))
  2272. } else {
  2273. // Do not send any ICMP replies to a broadcast destination address.
  2274. None
  2275. }
  2276. }
  2277. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  2278. fn process_udp<'frame>(
  2279. &mut self,
  2280. sockets: &mut SocketSet,
  2281. ip_repr: IpRepr,
  2282. handled_by_raw_socket: bool,
  2283. ip_payload: &'frame [u8],
  2284. ) -> Option<IpPacket<'frame>> {
  2285. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2286. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  2287. let udp_repr = check!(UdpRepr::parse(
  2288. &udp_packet,
  2289. &src_addr,
  2290. &dst_addr,
  2291. &self.caps.checksum
  2292. ));
  2293. let udp_payload = udp_packet.payload();
  2294. #[cfg(feature = "socket-udp")]
  2295. for udp_socket in sockets
  2296. .items_mut()
  2297. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  2298. {
  2299. if udp_socket.accepts(self, &ip_repr, &udp_repr) {
  2300. udp_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2301. return None;
  2302. }
  2303. }
  2304. #[cfg(feature = "socket-dns")]
  2305. for dns_socket in sockets
  2306. .items_mut()
  2307. .filter_map(|i| dns::Socket::downcast_mut(&mut i.socket))
  2308. {
  2309. if dns_socket.accepts(&ip_repr, &udp_repr) {
  2310. dns_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2311. return None;
  2312. }
  2313. }
  2314. // The packet wasn't handled by a socket, send an ICMP port unreachable packet.
  2315. match ip_repr {
  2316. #[cfg(feature = "proto-ipv4")]
  2317. IpRepr::Ipv4(_) if handled_by_raw_socket => None,
  2318. #[cfg(feature = "proto-ipv6")]
  2319. IpRepr::Ipv6(_) if handled_by_raw_socket => None,
  2320. #[cfg(feature = "proto-ipv4")]
  2321. IpRepr::Ipv4(ipv4_repr) => {
  2322. let payload_len =
  2323. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  2324. let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable {
  2325. reason: Icmpv4DstUnreachable::PortUnreachable,
  2326. header: ipv4_repr,
  2327. data: &ip_payload[0..payload_len],
  2328. };
  2329. self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr)
  2330. }
  2331. #[cfg(feature = "proto-ipv6")]
  2332. IpRepr::Ipv6(ipv6_repr) => {
  2333. let payload_len =
  2334. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  2335. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  2336. reason: Icmpv6DstUnreachable::PortUnreachable,
  2337. header: ipv6_repr,
  2338. data: &ip_payload[0..payload_len],
  2339. };
  2340. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  2341. }
  2342. }
  2343. }
  2344. #[cfg(feature = "socket-tcp")]
  2345. fn process_tcp<'frame>(
  2346. &mut self,
  2347. sockets: &mut SocketSet,
  2348. ip_repr: IpRepr,
  2349. ip_payload: &'frame [u8],
  2350. ) -> Option<IpPacket<'frame>> {
  2351. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2352. let tcp_packet = check!(TcpPacket::new_checked(ip_payload));
  2353. let tcp_repr = check!(TcpRepr::parse(
  2354. &tcp_packet,
  2355. &src_addr,
  2356. &dst_addr,
  2357. &self.caps.checksum
  2358. ));
  2359. for tcp_socket in sockets
  2360. .items_mut()
  2361. .filter_map(|i| tcp::Socket::downcast_mut(&mut i.socket))
  2362. {
  2363. if tcp_socket.accepts(self, &ip_repr, &tcp_repr) {
  2364. return tcp_socket
  2365. .process(self, &ip_repr, &tcp_repr)
  2366. .map(IpPacket::Tcp);
  2367. }
  2368. }
  2369. if tcp_repr.control == TcpControl::Rst {
  2370. // Never reply to a TCP RST packet with another TCP RST packet.
  2371. None
  2372. } else {
  2373. // The packet wasn't handled by a socket, send a TCP RST packet.
  2374. Some(IpPacket::Tcp(tcp::Socket::rst_reply(&ip_repr, &tcp_repr)))
  2375. }
  2376. }
  2377. #[cfg(feature = "medium-ethernet")]
  2378. fn dispatch<Tx>(&mut self, tx_token: Tx, packet: EthernetPacket) -> Result<()>
  2379. where
  2380. Tx: TxToken,
  2381. {
  2382. match packet {
  2383. #[cfg(feature = "proto-ipv4")]
  2384. EthernetPacket::Arp(arp_repr) => {
  2385. let dst_hardware_addr = match arp_repr {
  2386. ArpRepr::EthernetIpv4 {
  2387. target_hardware_addr,
  2388. ..
  2389. } => target_hardware_addr,
  2390. };
  2391. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2392. frame.set_dst_addr(dst_hardware_addr);
  2393. frame.set_ethertype(EthernetProtocol::Arp);
  2394. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  2395. arp_repr.emit(&mut packet);
  2396. })
  2397. }
  2398. EthernetPacket::Ip(packet) => self.dispatch_ip(tx_token, packet, None),
  2399. }
  2400. }
  2401. #[cfg(feature = "medium-ethernet")]
  2402. fn dispatch_ethernet<Tx, F>(&mut self, tx_token: Tx, buffer_len: usize, f: F) -> Result<()>
  2403. where
  2404. Tx: TxToken,
  2405. F: FnOnce(EthernetFrame<&mut [u8]>),
  2406. {
  2407. let tx_len = EthernetFrame::<&[u8]>::buffer_len(buffer_len);
  2408. tx_token.consume(self.now, tx_len, |tx_buffer| {
  2409. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2410. let mut frame = EthernetFrame::new_unchecked(tx_buffer);
  2411. let src_addr = if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2412. addr
  2413. } else {
  2414. return Err(Error::Malformed);
  2415. };
  2416. frame.set_src_addr(src_addr);
  2417. f(frame);
  2418. Ok(())
  2419. })
  2420. }
  2421. fn in_same_network(&self, addr: &IpAddress) -> bool {
  2422. self.ip_addrs.iter().any(|cidr| cidr.contains_addr(addr))
  2423. }
  2424. fn route(&self, addr: &IpAddress, timestamp: Instant) -> Result<IpAddress> {
  2425. // Send directly.
  2426. if self.in_same_network(addr) || addr.is_broadcast() {
  2427. return Ok(*addr);
  2428. }
  2429. // Route via a router.
  2430. match self.routes.lookup(addr, timestamp) {
  2431. Some(router_addr) => Ok(router_addr),
  2432. None => Err(Error::Unaddressable),
  2433. }
  2434. }
  2435. fn has_neighbor(&self, addr: &IpAddress) -> bool {
  2436. match self.route(addr, self.now) {
  2437. Ok(_routed_addr) => match self.caps.medium {
  2438. #[cfg(feature = "medium-ethernet")]
  2439. Medium::Ethernet => self
  2440. .neighbor_cache
  2441. .as_ref()
  2442. .unwrap()
  2443. .lookup(&_routed_addr, self.now)
  2444. .found(),
  2445. #[cfg(feature = "medium-ieee802154")]
  2446. Medium::Ieee802154 => self
  2447. .neighbor_cache
  2448. .as_ref()
  2449. .unwrap()
  2450. .lookup(&_routed_addr, self.now)
  2451. .found(),
  2452. #[cfg(feature = "medium-ip")]
  2453. Medium::Ip => true,
  2454. },
  2455. Err(_) => false,
  2456. }
  2457. }
  2458. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2459. fn lookup_hardware_addr<Tx>(
  2460. &mut self,
  2461. tx_token: Tx,
  2462. src_addr: &IpAddress,
  2463. dst_addr: &IpAddress,
  2464. ) -> Result<(HardwareAddress, Tx)>
  2465. where
  2466. Tx: TxToken,
  2467. {
  2468. if dst_addr.is_broadcast() {
  2469. let hardware_addr = match self.caps.medium {
  2470. #[cfg(feature = "medium-ethernet")]
  2471. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::BROADCAST),
  2472. #[cfg(feature = "medium-ieee802154")]
  2473. Medium::Ieee802154 => HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST),
  2474. #[cfg(feature = "medium-ip")]
  2475. Medium::Ip => unreachable!(),
  2476. };
  2477. return Ok((hardware_addr, tx_token));
  2478. }
  2479. if dst_addr.is_multicast() {
  2480. let b = dst_addr.as_bytes();
  2481. let hardware_addr = match *dst_addr {
  2482. #[cfg(feature = "proto-ipv4")]
  2483. IpAddress::Ipv4(_addr) => {
  2484. HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2485. 0x01,
  2486. 0x00,
  2487. 0x5e,
  2488. b[1] & 0x7F,
  2489. b[2],
  2490. b[3],
  2491. ]))
  2492. }
  2493. #[cfg(feature = "proto-ipv6")]
  2494. IpAddress::Ipv6(_addr) => match self.caps.medium {
  2495. #[cfg(feature = "medium-ethernet")]
  2496. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2497. 0x33, 0x33, b[12], b[13], b[14], b[15],
  2498. ])),
  2499. #[cfg(feature = "medium-ieee802154")]
  2500. Medium::Ieee802154 => {
  2501. // Not sure if this is correct
  2502. HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST)
  2503. }
  2504. #[cfg(feature = "medium-ip")]
  2505. Medium::Ip => unreachable!(),
  2506. },
  2507. };
  2508. return Ok((hardware_addr, tx_token));
  2509. }
  2510. let dst_addr = self.route(dst_addr, self.now)?;
  2511. match self
  2512. .neighbor_cache
  2513. .as_mut()
  2514. .unwrap()
  2515. .lookup(&dst_addr, self.now)
  2516. {
  2517. NeighborAnswer::Found(hardware_addr) => return Ok((hardware_addr, tx_token)),
  2518. NeighborAnswer::RateLimited => return Err(Error::Unaddressable),
  2519. _ => (), // XXX
  2520. }
  2521. match (src_addr, dst_addr) {
  2522. #[cfg(feature = "proto-ipv4")]
  2523. (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => {
  2524. net_debug!(
  2525. "address {} not in neighbor cache, sending ARP request",
  2526. dst_addr
  2527. );
  2528. let src_hardware_addr =
  2529. if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2530. addr
  2531. } else {
  2532. return Err(Error::Malformed);
  2533. };
  2534. let arp_repr = ArpRepr::EthernetIpv4 {
  2535. operation: ArpOperation::Request,
  2536. source_hardware_addr: src_hardware_addr,
  2537. source_protocol_addr: src_addr,
  2538. target_hardware_addr: EthernetAddress::BROADCAST,
  2539. target_protocol_addr: dst_addr,
  2540. };
  2541. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2542. frame.set_dst_addr(EthernetAddress::BROADCAST);
  2543. frame.set_ethertype(EthernetProtocol::Arp);
  2544. arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut()))
  2545. })?;
  2546. }
  2547. #[cfg(feature = "proto-ipv6")]
  2548. (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => {
  2549. net_debug!(
  2550. "address {} not in neighbor cache, sending Neighbor Solicitation",
  2551. dst_addr
  2552. );
  2553. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  2554. target_addr: dst_addr,
  2555. lladdr: Some(self.hardware_addr.unwrap().into()),
  2556. });
  2557. let packet = IpPacket::Icmpv6((
  2558. Ipv6Repr {
  2559. src_addr,
  2560. dst_addr: dst_addr.solicited_node(),
  2561. next_header: IpProtocol::Icmpv6,
  2562. payload_len: solicit.buffer_len(),
  2563. hop_limit: 0xff,
  2564. },
  2565. solicit,
  2566. ));
  2567. self.dispatch_ip(tx_token, packet, None)?;
  2568. }
  2569. #[allow(unreachable_patterns)]
  2570. _ => (),
  2571. }
  2572. // The request got dispatched, limit the rate on the cache.
  2573. self.neighbor_cache.as_mut().unwrap().limit_rate(self.now);
  2574. Err(Error::Unaddressable)
  2575. }
  2576. fn flush_cache(&mut self) {
  2577. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2578. if let Some(cache) = self.neighbor_cache.as_mut() {
  2579. cache.flush()
  2580. }
  2581. }
  2582. fn dispatch_ip<Tx: TxToken>(
  2583. &mut self,
  2584. tx_token: Tx,
  2585. packet: IpPacket,
  2586. _out_packet: Option<&mut OutPackets<'_>>,
  2587. ) -> Result<()> {
  2588. let ip_repr = packet.ip_repr();
  2589. assert!(!ip_repr.dst_addr().is_unspecified());
  2590. match self.caps.medium {
  2591. #[cfg(feature = "medium-ethernet")]
  2592. Medium::Ethernet => {
  2593. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2594. tx_token,
  2595. &ip_repr.src_addr(),
  2596. &ip_repr.dst_addr(),
  2597. )? {
  2598. (HardwareAddress::Ethernet(addr), tx_token) => (addr, tx_token),
  2599. #[cfg(feature = "medium-ieee802154")]
  2600. (HardwareAddress::Ieee802154(_), _) => unreachable!(),
  2601. };
  2602. let caps = self.caps.clone();
  2603. self.dispatch_ethernet(tx_token, ip_repr.total_len(), |mut frame| {
  2604. frame.set_dst_addr(dst_hardware_addr);
  2605. match ip_repr {
  2606. #[cfg(feature = "proto-ipv4")]
  2607. IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4),
  2608. #[cfg(feature = "proto-ipv6")]
  2609. IpRepr::Ipv6(_) => frame.set_ethertype(EthernetProtocol::Ipv6),
  2610. }
  2611. ip_repr.emit(frame.payload_mut(), &caps.checksum);
  2612. let payload = &mut frame.payload_mut()[ip_repr.buffer_len()..];
  2613. packet.emit_payload(ip_repr, payload, &caps);
  2614. })
  2615. }
  2616. #[cfg(feature = "medium-ip")]
  2617. Medium::Ip => {
  2618. let tx_len = ip_repr.total_len();
  2619. tx_token.consume(self.now, tx_len, |mut tx_buffer| {
  2620. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2621. ip_repr.emit(&mut tx_buffer, &self.caps.checksum);
  2622. let payload = &mut tx_buffer[ip_repr.buffer_len()..];
  2623. packet.emit_payload(ip_repr, payload, &self.caps);
  2624. Ok(())
  2625. })
  2626. }
  2627. #[cfg(feature = "medium-ieee802154")]
  2628. Medium::Ieee802154 => {
  2629. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2630. tx_token,
  2631. &ip_repr.src_addr(),
  2632. &ip_repr.dst_addr(),
  2633. )? {
  2634. (HardwareAddress::Ieee802154(addr), tx_token) => (addr, tx_token),
  2635. _ => unreachable!(),
  2636. };
  2637. self.dispatch_ieee802154(dst_hardware_addr, &ip_repr, tx_token, packet, _out_packet)
  2638. }
  2639. }
  2640. }
  2641. #[cfg(all(feature = "medium-ieee802154", feature = "proto-sixlowpan"))]
  2642. fn dispatch_ieee802154<Tx: TxToken>(
  2643. &mut self,
  2644. ll_dst_a: Ieee802154Address,
  2645. ip_repr: &IpRepr,
  2646. tx_token: Tx,
  2647. packet: IpPacket,
  2648. _out_packet: Option<&mut OutPackets>,
  2649. ) -> Result<()> {
  2650. // We first need to convert the IPv6 packet to a 6LoWPAN compressed packet.
  2651. // Whenever this packet is to big to fit in the IEEE802.15.4 packet, then we need to
  2652. // fragment it.
  2653. let ll_src_a = self.hardware_addr.map_or_else(
  2654. || Err(Error::Malformed),
  2655. |addr| match addr {
  2656. HardwareAddress::Ieee802154(addr) => Ok(addr),
  2657. _ => Err(Error::Malformed),
  2658. },
  2659. )?;
  2660. let (src_addr, dst_addr) = match (ip_repr.src_addr(), ip_repr.dst_addr()) {
  2661. (IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => (src_addr, dst_addr),
  2662. #[allow(unreachable_patterns)]
  2663. _ => return Err(Error::Unaddressable),
  2664. };
  2665. // Create the IEEE802.15.4 header.
  2666. let ieee_repr = Ieee802154Repr {
  2667. frame_type: Ieee802154FrameType::Data,
  2668. security_enabled: false,
  2669. frame_pending: false,
  2670. ack_request: false,
  2671. sequence_number: Some(self.get_sequence_number()),
  2672. pan_id_compression: true,
  2673. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2674. dst_pan_id: self.pan_id,
  2675. dst_addr: Some(ll_dst_a),
  2676. src_pan_id: self.pan_id,
  2677. src_addr: Some(ll_src_a),
  2678. };
  2679. // Create the 6LoWPAN IPHC header.
  2680. let iphc_repr = SixlowpanIphcRepr {
  2681. src_addr,
  2682. ll_src_addr: Some(ll_src_a),
  2683. dst_addr,
  2684. ll_dst_addr: Some(ll_dst_a),
  2685. next_header: match &packet {
  2686. IpPacket::Icmpv6(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Icmpv6),
  2687. #[cfg(feature = "socket-tcp")]
  2688. IpPacket::Tcp(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Tcp),
  2689. #[cfg(feature = "socket-udp")]
  2690. IpPacket::Udp(_) => SixlowpanNextHeader::Compressed,
  2691. #[allow(unreachable_patterns)]
  2692. _ => return Err(Error::Unrecognized),
  2693. },
  2694. hop_limit: ip_repr.hop_limit(),
  2695. ecn: None,
  2696. dscp: None,
  2697. flow_label: None,
  2698. };
  2699. // Now we calculate the total size of the packet.
  2700. // We need to know this, such that we know when to do the fragmentation.
  2701. let mut total_size = 0;
  2702. total_size += iphc_repr.buffer_len();
  2703. let mut _compressed_headers_len = iphc_repr.buffer_len();
  2704. let mut _uncompressed_headers_len = ip_repr.buffer_len();
  2705. #[allow(unreachable_patterns)]
  2706. match packet {
  2707. #[cfg(feature = "socket-udp")]
  2708. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2709. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2710. _compressed_headers_len += udp_repr.header_len();
  2711. _uncompressed_headers_len += udpv6_repr.header_len();
  2712. total_size += udp_repr.header_len() + payload.len();
  2713. }
  2714. #[cfg(feature = "socket-tcp")]
  2715. IpPacket::Tcp((_, tcp_repr)) => {
  2716. total_size += tcp_repr.buffer_len();
  2717. }
  2718. #[cfg(feature = "proto-ipv6")]
  2719. IpPacket::Icmpv6((_, icmp_repr)) => {
  2720. total_size += icmp_repr.buffer_len();
  2721. }
  2722. _ => return Err(Error::Unrecognized),
  2723. }
  2724. let ieee_len = ieee_repr.buffer_len();
  2725. if total_size + ieee_len > 125 {
  2726. cfg_if::cfg_if! {
  2727. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  2728. // The packet does not fit in one Ieee802154 frame, so we need fragmentation.
  2729. // We do this by emitting everything in the `out_packet.buffer` from the interface.
  2730. // After emitting everything into that buffer, we send the first fragment heere.
  2731. // When `poll` is called again, we check if out_packet was fully sent, otherwise we
  2732. // call `dispatch_ieee802154_out_packet`, which will transmit the other fragments.
  2733. // `dispatch_ieee802154_out_packet` requires some information about the total packet size,
  2734. // the link local source and destination address...
  2735. let SixlowpanOutPacket {
  2736. buffer,
  2737. packet_len,
  2738. datagram_size,
  2739. datagram_tag,
  2740. sent_bytes,
  2741. fragn_size,
  2742. ll_dst_addr,
  2743. ll_src_addr,
  2744. datagram_offset,
  2745. ..
  2746. } = &mut _out_packet.unwrap().sixlowpan_out_packet;
  2747. *ll_dst_addr = ll_dst_a;
  2748. *ll_src_addr = ll_src_a;
  2749. let mut iphc_packet =
  2750. SixlowpanIphcPacket::new_unchecked(&mut buffer[..iphc_repr.buffer_len()]);
  2751. iphc_repr.emit(&mut iphc_packet);
  2752. let b = &mut buffer[iphc_repr.buffer_len()..];
  2753. #[allow(unreachable_patterns)]
  2754. match packet {
  2755. #[cfg(feature = "socket-udp")]
  2756. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2757. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2758. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2759. &mut b[..udp_repr.header_len() + payload.len()],
  2760. );
  2761. udp_repr.emit(
  2762. &mut udp_packet,
  2763. &iphc_repr.src_addr,
  2764. &iphc_repr.dst_addr,
  2765. payload.len(),
  2766. |buf| buf.copy_from_slice(payload),
  2767. );
  2768. }
  2769. #[cfg(feature = "socket-tcp")]
  2770. IpPacket::Tcp((_, tcp_repr)) => {
  2771. let mut tcp_packet = TcpPacket::new_unchecked(&mut b[..tcp_repr.buffer_len()]);
  2772. tcp_repr.emit(
  2773. &mut tcp_packet,
  2774. &iphc_repr.src_addr.into(),
  2775. &iphc_repr.dst_addr.into(),
  2776. &self.caps.checksum,
  2777. );
  2778. }
  2779. #[cfg(feature = "proto-ipv6")]
  2780. IpPacket::Icmpv6((_, icmp_repr)) => {
  2781. let mut icmp_packet =
  2782. Icmpv6Packet::new_unchecked(&mut b[..icmp_repr.buffer_len()]);
  2783. icmp_repr.emit(
  2784. &iphc_repr.src_addr.into(),
  2785. &iphc_repr.dst_addr.into(),
  2786. &mut icmp_packet,
  2787. &self.caps.checksum,
  2788. );
  2789. }
  2790. _ => return Err(Error::Unrecognized),
  2791. }
  2792. *packet_len = total_size;
  2793. // The datagram size that we need to set in the first fragment header is equal to the
  2794. // IPv6 payload length + 40.
  2795. *datagram_size = (packet.ip_repr().payload_len() + 40) as u16;
  2796. // We generate a random tag.
  2797. let tag = self.get_sixlowpan_fragment_tag();
  2798. // We save the tag for the other fragments that will be created when calling `poll`
  2799. // multiple times.
  2800. *datagram_tag = tag;
  2801. let frag1 = SixlowpanFragRepr::FirstFragment {
  2802. size: *datagram_size,
  2803. tag,
  2804. };
  2805. let fragn = SixlowpanFragRepr::Fragment {
  2806. size: *datagram_size,
  2807. tag,
  2808. offset: 0,
  2809. };
  2810. // We calculate how much data we can send in the first fragment and the other
  2811. // fragments. The eventual IPv6 sizes of these fragments need to be a multiple of eight
  2812. // (except for the last fragment) since the offset field in the fragment is an offset
  2813. // in multiples of 8 octets. This is explained in [RFC 4944 § 5.3].
  2814. //
  2815. // [RFC 4944 § 5.3]: https://datatracker.ietf.org/doc/html/rfc4944#section-5.3
  2816. let header_diff = _uncompressed_headers_len - _compressed_headers_len;
  2817. let frag1_size =
  2818. (125 - ieee_len - frag1.buffer_len() + header_diff) / 8 * 8 - (header_diff);
  2819. *fragn_size = (125 - ieee_len - fragn.buffer_len()) / 8 * 8;
  2820. *sent_bytes = frag1_size;
  2821. *datagram_offset = frag1_size + header_diff;
  2822. tx_token.consume(
  2823. self.now,
  2824. ieee_len + frag1.buffer_len() + frag1_size,
  2825. |mut tx_buf| {
  2826. // Add the IEEE header.
  2827. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2828. ieee_repr.emit(&mut ieee_packet);
  2829. tx_buf = &mut tx_buf[ieee_len..];
  2830. // Add the first fragment header
  2831. let mut frag1_packet = SixlowpanFragPacket::new_unchecked(&mut tx_buf);
  2832. frag1.emit(&mut frag1_packet);
  2833. tx_buf = &mut tx_buf[frag1.buffer_len()..];
  2834. // Add the buffer part.
  2835. tx_buf[..frag1_size].copy_from_slice(&buffer[..frag1_size]);
  2836. Ok(())
  2837. },
  2838. )
  2839. } else {
  2840. net_debug!("Enable the `proto-sixlowpan-fragmentation` feature for fragmentation support.");
  2841. Ok(())
  2842. }
  2843. }
  2844. } else {
  2845. // We don't need fragmentation, so we emit everything to the TX token.
  2846. tx_token.consume(self.now, total_size + ieee_len, |mut tx_buf| {
  2847. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2848. ieee_repr.emit(&mut ieee_packet);
  2849. tx_buf = &mut tx_buf[ieee_len..];
  2850. let mut iphc_packet =
  2851. SixlowpanIphcPacket::new_unchecked(&mut tx_buf[..iphc_repr.buffer_len()]);
  2852. iphc_repr.emit(&mut iphc_packet);
  2853. tx_buf = &mut tx_buf[iphc_repr.buffer_len()..];
  2854. #[allow(unreachable_patterns)]
  2855. match packet {
  2856. #[cfg(feature = "socket-udp")]
  2857. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2858. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2859. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2860. &mut tx_buf[..udp_repr.header_len() + payload.len()],
  2861. );
  2862. udp_repr.emit(
  2863. &mut udp_packet,
  2864. &iphc_repr.src_addr,
  2865. &iphc_repr.dst_addr,
  2866. payload.len(),
  2867. |buf| buf.copy_from_slice(payload),
  2868. );
  2869. }
  2870. #[cfg(feature = "socket-tcp")]
  2871. IpPacket::Tcp((_, tcp_repr)) => {
  2872. let mut tcp_packet =
  2873. TcpPacket::new_unchecked(&mut tx_buf[..tcp_repr.buffer_len()]);
  2874. tcp_repr.emit(
  2875. &mut tcp_packet,
  2876. &iphc_repr.src_addr.into(),
  2877. &iphc_repr.dst_addr.into(),
  2878. &self.caps.checksum,
  2879. );
  2880. }
  2881. #[cfg(feature = "proto-ipv6")]
  2882. IpPacket::Icmpv6((_, icmp_repr)) => {
  2883. let mut icmp_packet =
  2884. Icmpv6Packet::new_unchecked(&mut tx_buf[..icmp_repr.buffer_len()]);
  2885. icmp_repr.emit(
  2886. &iphc_repr.src_addr.into(),
  2887. &iphc_repr.dst_addr.into(),
  2888. &mut icmp_packet,
  2889. &self.caps.checksum,
  2890. );
  2891. }
  2892. _ => return Err(Error::Unrecognized),
  2893. }
  2894. Ok(())
  2895. })
  2896. }
  2897. }
  2898. #[cfg(all(
  2899. feature = "medium-ieee802154",
  2900. feature = "proto-sixlowpan-fragmentation"
  2901. ))]
  2902. fn dispatch_ieee802154_out_packet<Tx: TxToken>(
  2903. &mut self,
  2904. tx_token: Tx,
  2905. out_packet: &mut SixlowpanOutPacket,
  2906. ) -> Result<()> {
  2907. let SixlowpanOutPacket {
  2908. buffer,
  2909. packet_len,
  2910. datagram_size,
  2911. datagram_tag,
  2912. datagram_offset,
  2913. sent_bytes,
  2914. fragn_size,
  2915. ll_dst_addr,
  2916. ll_src_addr,
  2917. ..
  2918. } = out_packet;
  2919. // Create the IEEE802.15.4 header.
  2920. let ieee_repr = Ieee802154Repr {
  2921. frame_type: Ieee802154FrameType::Data,
  2922. security_enabled: false,
  2923. frame_pending: false,
  2924. ack_request: false,
  2925. sequence_number: Some(self.get_sequence_number()),
  2926. pan_id_compression: true,
  2927. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2928. dst_pan_id: self.pan_id,
  2929. dst_addr: Some(*ll_dst_addr),
  2930. src_pan_id: self.pan_id,
  2931. src_addr: Some(*ll_src_addr),
  2932. };
  2933. // Create the FRAG_N header.
  2934. let fragn = SixlowpanFragRepr::Fragment {
  2935. size: *datagram_size,
  2936. tag: *datagram_tag,
  2937. offset: (*datagram_offset / 8) as u8,
  2938. };
  2939. let ieee_len = ieee_repr.buffer_len();
  2940. let frag_size = (*packet_len - *sent_bytes).min(*fragn_size);
  2941. tx_token.consume(
  2942. self.now,
  2943. ieee_repr.buffer_len() + fragn.buffer_len() + frag_size,
  2944. |mut tx_buf| {
  2945. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2946. ieee_repr.emit(&mut ieee_packet);
  2947. tx_buf = &mut tx_buf[ieee_len..];
  2948. let mut frag_packet =
  2949. SixlowpanFragPacket::new_unchecked(&mut tx_buf[..fragn.buffer_len()]);
  2950. fragn.emit(&mut frag_packet);
  2951. tx_buf = &mut tx_buf[fragn.buffer_len()..];
  2952. // Add the buffer part
  2953. tx_buf[..frag_size].copy_from_slice(&buffer[*sent_bytes..][..frag_size]);
  2954. *sent_bytes += frag_size;
  2955. *datagram_offset += frag_size;
  2956. Ok(())
  2957. },
  2958. )
  2959. }
  2960. #[cfg(feature = "proto-igmp")]
  2961. fn igmp_report_packet<'any>(
  2962. &self,
  2963. version: IgmpVersion,
  2964. group_addr: Ipv4Address,
  2965. ) -> Option<IpPacket<'any>> {
  2966. let iface_addr = self.ipv4_address()?;
  2967. let igmp_repr = IgmpRepr::MembershipReport {
  2968. group_addr,
  2969. version,
  2970. };
  2971. let pkt = IpPacket::Igmp((
  2972. Ipv4Repr {
  2973. src_addr: iface_addr,
  2974. // Send to the group being reported
  2975. dst_addr: group_addr,
  2976. next_header: IpProtocol::Igmp,
  2977. payload_len: igmp_repr.buffer_len(),
  2978. hop_limit: 1,
  2979. // TODO: add Router Alert IPv4 header option. See
  2980. // [#183](https://github.com/m-labs/smoltcp/issues/183).
  2981. },
  2982. igmp_repr,
  2983. ));
  2984. Some(pkt)
  2985. }
  2986. #[cfg(feature = "proto-igmp")]
  2987. fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option<IpPacket<'any>> {
  2988. self.ipv4_address().map(|iface_addr| {
  2989. let igmp_repr = IgmpRepr::LeaveGroup { group_addr };
  2990. IpPacket::Igmp((
  2991. Ipv4Repr {
  2992. src_addr: iface_addr,
  2993. dst_addr: Ipv4Address::MULTICAST_ALL_ROUTERS,
  2994. next_header: IpProtocol::Igmp,
  2995. payload_len: igmp_repr.buffer_len(),
  2996. hop_limit: 1,
  2997. },
  2998. igmp_repr,
  2999. ))
  3000. })
  3001. }
  3002. }
  3003. #[cfg(test)]
  3004. mod test {
  3005. use std::collections::BTreeMap;
  3006. #[cfg(feature = "proto-igmp")]
  3007. use std::vec::Vec;
  3008. use super::*;
  3009. use crate::iface::Interface;
  3010. #[cfg(feature = "medium-ethernet")]
  3011. use crate::iface::NeighborCache;
  3012. use crate::phy::{ChecksumCapabilities, Loopback};
  3013. #[cfg(feature = "proto-igmp")]
  3014. use crate::time::Instant;
  3015. use crate::{Error, Result};
  3016. #[allow(unused)]
  3017. fn fill_slice(s: &mut [u8], val: u8) {
  3018. for x in s.iter_mut() {
  3019. *x = val
  3020. }
  3021. }
  3022. fn create<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3023. #[cfg(feature = "medium-ethernet")]
  3024. return create_ethernet();
  3025. #[cfg(not(feature = "medium-ethernet"))]
  3026. return create_ip();
  3027. }
  3028. #[cfg(all(feature = "medium-ip"))]
  3029. #[allow(unused)]
  3030. fn create_ip<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3031. // Create a basic device
  3032. let mut device = Loopback::new(Medium::Ip);
  3033. let ip_addrs = [
  3034. #[cfg(feature = "proto-ipv4")]
  3035. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3036. #[cfg(feature = "proto-ipv6")]
  3037. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3038. #[cfg(feature = "proto-ipv6")]
  3039. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3040. ];
  3041. let iface_builder = InterfaceBuilder::new().ip_addrs(ip_addrs);
  3042. #[cfg(feature = "proto-ipv4-fragmentation")]
  3043. let iface_builder =
  3044. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3045. #[cfg(feature = "proto-igmp")]
  3046. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3047. let iface = iface_builder.finalize(&mut device);
  3048. (iface, SocketSet::new(vec![]), device)
  3049. }
  3050. #[cfg(all(feature = "medium-ethernet"))]
  3051. fn create_ethernet<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3052. // Create a basic device
  3053. let mut device = Loopback::new(Medium::Ethernet);
  3054. let ip_addrs = [
  3055. #[cfg(feature = "proto-ipv4")]
  3056. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3057. #[cfg(feature = "proto-ipv6")]
  3058. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3059. #[cfg(feature = "proto-ipv6")]
  3060. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3061. ];
  3062. let iface_builder = InterfaceBuilder::new()
  3063. .hardware_addr(EthernetAddress::default().into())
  3064. .neighbor_cache(NeighborCache::new(BTreeMap::new()))
  3065. .ip_addrs(ip_addrs);
  3066. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  3067. let iface_builder = iface_builder
  3068. .sixlowpan_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()))
  3069. .sixlowpan_out_packet_cache(vec![]);
  3070. #[cfg(feature = "proto-ipv4-fragmentation")]
  3071. let iface_builder =
  3072. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3073. #[cfg(feature = "proto-igmp")]
  3074. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3075. let iface = iface_builder.finalize(&mut device);
  3076. (iface, SocketSet::new(vec![]), device)
  3077. }
  3078. #[cfg(feature = "proto-igmp")]
  3079. fn recv_all(device: &mut Loopback, timestamp: Instant) -> Vec<Vec<u8>> {
  3080. let mut pkts = Vec::new();
  3081. while let Some((rx, _tx)) = device.receive() {
  3082. rx.consume(timestamp, |pkt| {
  3083. pkts.push(pkt.to_vec());
  3084. Ok(())
  3085. })
  3086. .unwrap();
  3087. }
  3088. pkts
  3089. }
  3090. #[derive(Debug, PartialEq)]
  3091. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  3092. struct MockTxToken;
  3093. impl TxToken for MockTxToken {
  3094. fn consume<R, F>(self, _: Instant, _: usize, _: F) -> Result<R>
  3095. where
  3096. F: FnOnce(&mut [u8]) -> Result<R>,
  3097. {
  3098. Err(Error::Unaddressable)
  3099. }
  3100. }
  3101. #[test]
  3102. #[should_panic(expected = "hardware_addr required option was not set")]
  3103. #[cfg(all(feature = "medium-ethernet"))]
  3104. fn test_builder_initialization_panic() {
  3105. let mut device = Loopback::new(Medium::Ethernet);
  3106. InterfaceBuilder::new().finalize(&mut device);
  3107. }
  3108. #[test]
  3109. #[cfg(feature = "proto-ipv4")]
  3110. fn test_no_icmp_no_unicast_ipv4() {
  3111. let (mut iface, mut sockets, _device) = create();
  3112. // Unknown Ipv4 Protocol
  3113. //
  3114. // Because the destination is the broadcast address
  3115. // this should not trigger and Destination Unreachable
  3116. // response. See RFC 1122 § 3.2.2.
  3117. let repr = IpRepr::Ipv4(Ipv4Repr {
  3118. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3119. dst_addr: Ipv4Address::BROADCAST,
  3120. next_header: IpProtocol::Unknown(0x0c),
  3121. payload_len: 0,
  3122. hop_limit: 0x40,
  3123. });
  3124. let mut bytes = vec![0u8; 54];
  3125. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3126. let frame = Ipv4Packet::new_unchecked(&bytes);
  3127. // Ensure that the unknown protocol frame does not trigger an
  3128. // ICMP error response when the destination address is a
  3129. // broadcast address
  3130. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3131. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  3132. #[cfg(feature = "proto-ipv4-fragmentation")]
  3133. assert_eq!(
  3134. iface.inner.process_ipv4(
  3135. &mut sockets,
  3136. &frame,
  3137. Some(&mut iface.fragments.ipv4_fragments)
  3138. ),
  3139. None
  3140. );
  3141. }
  3142. #[test]
  3143. #[cfg(feature = "proto-ipv6")]
  3144. fn test_no_icmp_no_unicast_ipv6() {
  3145. let (mut iface, mut sockets, _device) = create();
  3146. // Unknown Ipv6 Protocol
  3147. //
  3148. // Because the destination is the broadcast address
  3149. // this should not trigger and Destination Unreachable
  3150. // response. See RFC 1122 § 3.2.2.
  3151. let repr = IpRepr::Ipv6(Ipv6Repr {
  3152. src_addr: Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1),
  3153. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3154. next_header: IpProtocol::Unknown(0x0c),
  3155. payload_len: 0,
  3156. hop_limit: 0x40,
  3157. });
  3158. let mut bytes = vec![0u8; 54];
  3159. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3160. let frame = Ipv6Packet::new_unchecked(&bytes);
  3161. // Ensure that the unknown protocol frame does not trigger an
  3162. // ICMP error response when the destination address is a
  3163. // broadcast address
  3164. assert_eq!(iface.inner.process_ipv6(&mut sockets, &frame), None);
  3165. }
  3166. #[test]
  3167. #[cfg(feature = "proto-ipv4")]
  3168. fn test_icmp_error_no_payload() {
  3169. static NO_BYTES: [u8; 0] = [];
  3170. let (mut iface, mut sockets, _device) = create();
  3171. // Unknown Ipv4 Protocol with no payload
  3172. let repr = IpRepr::Ipv4(Ipv4Repr {
  3173. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3174. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3175. next_header: IpProtocol::Unknown(0x0c),
  3176. payload_len: 0,
  3177. hop_limit: 0x40,
  3178. });
  3179. let mut bytes = vec![0u8; 34];
  3180. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3181. let frame = Ipv4Packet::new_unchecked(&bytes);
  3182. // The expected Destination Unreachable response due to the
  3183. // unknown protocol
  3184. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3185. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  3186. header: Ipv4Repr {
  3187. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3188. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3189. next_header: IpProtocol::Unknown(12),
  3190. payload_len: 0,
  3191. hop_limit: 64,
  3192. },
  3193. data: &NO_BYTES,
  3194. };
  3195. let expected_repr = IpPacket::Icmpv4((
  3196. Ipv4Repr {
  3197. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3198. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3199. next_header: IpProtocol::Icmp,
  3200. payload_len: icmp_repr.buffer_len(),
  3201. hop_limit: 64,
  3202. },
  3203. icmp_repr,
  3204. ));
  3205. // Ensure that the unknown protocol triggers an error response.
  3206. // And we correctly handle no payload.
  3207. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3208. assert_eq!(
  3209. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3210. Some(expected_repr)
  3211. );
  3212. #[cfg(feature = "proto-ipv4-fragmentation")]
  3213. assert_eq!(
  3214. iface.inner.process_ipv4(
  3215. &mut sockets,
  3216. &frame,
  3217. Some(&mut iface.fragments.ipv4_fragments)
  3218. ),
  3219. Some(expected_repr)
  3220. );
  3221. }
  3222. #[test]
  3223. #[cfg(feature = "proto-ipv4")]
  3224. fn test_local_subnet_broadcasts() {
  3225. let (mut iface, _, _device) = create();
  3226. iface.update_ip_addrs(|addrs| {
  3227. addrs.iter_mut().next().map(|addr| {
  3228. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 1, 23]), 24));
  3229. });
  3230. });
  3231. assert!(iface
  3232. .inner
  3233. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 255])),);
  3234. assert!(!iface
  3235. .inner
  3236. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 254])),);
  3237. iface.update_ip_addrs(|addrs| {
  3238. addrs.iter_mut().next().map(|addr| {
  3239. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 16));
  3240. });
  3241. });
  3242. assert!(!iface
  3243. .inner
  3244. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 255])),);
  3245. assert!(!iface
  3246. .inner
  3247. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 254])),);
  3248. assert!(!iface
  3249. .inner
  3250. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 254])),);
  3251. assert!(iface
  3252. .inner
  3253. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 255])),);
  3254. iface.update_ip_addrs(|addrs| {
  3255. addrs.iter_mut().next().map(|addr| {
  3256. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 8));
  3257. });
  3258. });
  3259. assert!(!iface
  3260. .inner
  3261. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 255])),);
  3262. assert!(!iface
  3263. .inner
  3264. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 254])),);
  3265. assert!(!iface
  3266. .inner
  3267. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 254])),);
  3268. assert!(iface
  3269. .inner
  3270. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 255])),);
  3271. }
  3272. #[test]
  3273. #[cfg(all(feature = "socket-udp", feature = "proto-ipv4"))]
  3274. fn test_icmp_error_port_unreachable() {
  3275. static UDP_PAYLOAD: [u8; 12] = [
  3276. 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c, 0x20, 0x57, 0x6f, 0x6c, 0x64, 0x21,
  3277. ];
  3278. let (mut iface, mut sockets, _device) = create();
  3279. let mut udp_bytes_unicast = vec![0u8; 20];
  3280. let mut udp_bytes_broadcast = vec![0u8; 20];
  3281. let mut packet_unicast = UdpPacket::new_unchecked(&mut udp_bytes_unicast);
  3282. let mut packet_broadcast = UdpPacket::new_unchecked(&mut udp_bytes_broadcast);
  3283. let udp_repr = UdpRepr {
  3284. src_port: 67,
  3285. dst_port: 68,
  3286. };
  3287. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3288. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3289. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3290. next_header: IpProtocol::Udp,
  3291. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3292. hop_limit: 64,
  3293. });
  3294. // Emit the representations to a packet
  3295. udp_repr.emit(
  3296. &mut packet_unicast,
  3297. &ip_repr.src_addr(),
  3298. &ip_repr.dst_addr(),
  3299. UDP_PAYLOAD.len(),
  3300. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3301. &ChecksumCapabilities::default(),
  3302. );
  3303. let data = packet_unicast.into_inner();
  3304. // The expected Destination Unreachable ICMPv4 error response due
  3305. // to no sockets listening on the destination port.
  3306. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3307. reason: Icmpv4DstUnreachable::PortUnreachable,
  3308. header: Ipv4Repr {
  3309. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3310. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3311. next_header: IpProtocol::Udp,
  3312. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3313. hop_limit: 64,
  3314. },
  3315. data,
  3316. };
  3317. let expected_repr = IpPacket::Icmpv4((
  3318. Ipv4Repr {
  3319. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3320. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3321. next_header: IpProtocol::Icmp,
  3322. payload_len: icmp_repr.buffer_len(),
  3323. hop_limit: 64,
  3324. },
  3325. icmp_repr,
  3326. ));
  3327. // Ensure that the unknown protocol triggers an error response.
  3328. // And we correctly handle no payload.
  3329. assert_eq!(
  3330. iface.inner.process_udp(&mut sockets, ip_repr, false, data),
  3331. Some(expected_repr)
  3332. );
  3333. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3334. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3335. dst_addr: Ipv4Address::BROADCAST,
  3336. next_header: IpProtocol::Udp,
  3337. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3338. hop_limit: 64,
  3339. });
  3340. // Emit the representations to a packet
  3341. udp_repr.emit(
  3342. &mut packet_broadcast,
  3343. &ip_repr.src_addr(),
  3344. &IpAddress::Ipv4(Ipv4Address::BROADCAST),
  3345. UDP_PAYLOAD.len(),
  3346. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3347. &ChecksumCapabilities::default(),
  3348. );
  3349. // Ensure that the port unreachable error does not trigger an
  3350. // ICMP error response when the destination address is a
  3351. // broadcast address and no socket is bound to the port.
  3352. assert_eq!(
  3353. iface
  3354. .inner
  3355. .process_udp(&mut sockets, ip_repr, false, packet_broadcast.into_inner()),
  3356. None
  3357. );
  3358. }
  3359. #[test]
  3360. #[cfg(feature = "socket-udp")]
  3361. fn test_handle_udp_broadcast() {
  3362. use crate::wire::IpEndpoint;
  3363. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  3364. let (mut iface, mut sockets, _device) = create();
  3365. let rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3366. let tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3367. let udp_socket = udp::Socket::new(rx_buffer, tx_buffer);
  3368. let mut udp_bytes = vec![0u8; 13];
  3369. let mut packet = UdpPacket::new_unchecked(&mut udp_bytes);
  3370. let socket_handle = sockets.add(udp_socket);
  3371. #[cfg(feature = "proto-ipv6")]
  3372. let src_ip = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3373. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3374. let src_ip = Ipv4Address::new(0x7f, 0x00, 0x00, 0x02);
  3375. let udp_repr = UdpRepr {
  3376. src_port: 67,
  3377. dst_port: 68,
  3378. };
  3379. #[cfg(feature = "proto-ipv6")]
  3380. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3381. src_addr: src_ip,
  3382. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3383. next_header: IpProtocol::Udp,
  3384. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3385. hop_limit: 0x40,
  3386. });
  3387. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3388. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3389. src_addr: src_ip,
  3390. dst_addr: Ipv4Address::BROADCAST,
  3391. next_header: IpProtocol::Udp,
  3392. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3393. hop_limit: 0x40,
  3394. });
  3395. // Bind the socket to port 68
  3396. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3397. assert_eq!(socket.bind(68), Ok(()));
  3398. assert!(!socket.can_recv());
  3399. assert!(socket.can_send());
  3400. udp_repr.emit(
  3401. &mut packet,
  3402. &ip_repr.src_addr(),
  3403. &ip_repr.dst_addr(),
  3404. UDP_PAYLOAD.len(),
  3405. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3406. &ChecksumCapabilities::default(),
  3407. );
  3408. // Packet should be handled by bound UDP socket
  3409. assert_eq!(
  3410. iface
  3411. .inner
  3412. .process_udp(&mut sockets, ip_repr, false, packet.into_inner()),
  3413. None
  3414. );
  3415. // Make sure the payload to the UDP packet processed by process_udp is
  3416. // appended to the bound sockets rx_buffer
  3417. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3418. assert!(socket.can_recv());
  3419. assert_eq!(
  3420. socket.recv(),
  3421. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_ip.into(), 67)))
  3422. );
  3423. }
  3424. #[test]
  3425. #[cfg(feature = "proto-ipv4")]
  3426. fn test_handle_ipv4_broadcast() {
  3427. use crate::wire::{Icmpv4Packet, Icmpv4Repr, Ipv4Packet};
  3428. let (mut iface, mut sockets, _device) = create();
  3429. let our_ipv4_addr = iface.ipv4_address().unwrap();
  3430. let src_ipv4_addr = Ipv4Address([127, 0, 0, 2]);
  3431. // ICMPv4 echo request
  3432. let icmpv4_data: [u8; 4] = [0xaa, 0x00, 0x00, 0xff];
  3433. let icmpv4_repr = Icmpv4Repr::EchoRequest {
  3434. ident: 0x1234,
  3435. seq_no: 0xabcd,
  3436. data: &icmpv4_data,
  3437. };
  3438. // Send to IPv4 broadcast address
  3439. let ipv4_repr = Ipv4Repr {
  3440. src_addr: src_ipv4_addr,
  3441. dst_addr: Ipv4Address::BROADCAST,
  3442. next_header: IpProtocol::Icmp,
  3443. hop_limit: 64,
  3444. payload_len: icmpv4_repr.buffer_len(),
  3445. };
  3446. // Emit to ip frame
  3447. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + icmpv4_repr.buffer_len()];
  3448. let frame = {
  3449. ipv4_repr.emit(
  3450. &mut Ipv4Packet::new_unchecked(&mut bytes),
  3451. &ChecksumCapabilities::default(),
  3452. );
  3453. icmpv4_repr.emit(
  3454. &mut Icmpv4Packet::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  3455. &ChecksumCapabilities::default(),
  3456. );
  3457. Ipv4Packet::new_unchecked(&bytes)
  3458. };
  3459. // Expected ICMPv4 echo reply
  3460. let expected_icmpv4_repr = Icmpv4Repr::EchoReply {
  3461. ident: 0x1234,
  3462. seq_no: 0xabcd,
  3463. data: &icmpv4_data,
  3464. };
  3465. let expected_ipv4_repr = Ipv4Repr {
  3466. src_addr: our_ipv4_addr,
  3467. dst_addr: src_ipv4_addr,
  3468. next_header: IpProtocol::Icmp,
  3469. hop_limit: 64,
  3470. payload_len: expected_icmpv4_repr.buffer_len(),
  3471. };
  3472. let expected_packet = IpPacket::Icmpv4((expected_ipv4_repr, expected_icmpv4_repr));
  3473. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3474. assert_eq!(
  3475. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3476. Some(expected_packet)
  3477. );
  3478. #[cfg(feature = "proto-ipv4-fragmentation")]
  3479. assert_eq!(
  3480. iface.inner.process_ipv4(
  3481. &mut sockets,
  3482. &frame,
  3483. Some(&mut iface.fragments.ipv4_fragments)
  3484. ),
  3485. Some(expected_packet)
  3486. );
  3487. }
  3488. #[test]
  3489. #[cfg(feature = "socket-udp")]
  3490. fn test_icmp_reply_size() {
  3491. #[cfg(feature = "proto-ipv6")]
  3492. use crate::wire::Icmpv6DstUnreachable;
  3493. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3494. use crate::wire::IPV4_MIN_MTU as MIN_MTU;
  3495. #[cfg(feature = "proto-ipv6")]
  3496. use crate::wire::IPV6_MIN_MTU as MIN_MTU;
  3497. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3498. const MAX_PAYLOAD_LEN: usize = 528;
  3499. #[cfg(feature = "proto-ipv6")]
  3500. const MAX_PAYLOAD_LEN: usize = 1192;
  3501. let (mut iface, mut sockets, _device) = create();
  3502. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3503. let src_addr = Ipv4Address([192, 168, 1, 1]);
  3504. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3505. let dst_addr = Ipv4Address([192, 168, 1, 2]);
  3506. #[cfg(feature = "proto-ipv6")]
  3507. let src_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3508. #[cfg(feature = "proto-ipv6")]
  3509. let dst_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 2);
  3510. // UDP packet that if not tructated will cause a icmp port unreachable reply
  3511. // to exeed the minimum mtu bytes in length.
  3512. let udp_repr = UdpRepr {
  3513. src_port: 67,
  3514. dst_port: 68,
  3515. };
  3516. let mut bytes = vec![0xff; udp_repr.header_len() + MAX_PAYLOAD_LEN];
  3517. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  3518. udp_repr.emit(
  3519. &mut packet,
  3520. &src_addr.into(),
  3521. &dst_addr.into(),
  3522. MAX_PAYLOAD_LEN,
  3523. |buf| fill_slice(buf, 0x2a),
  3524. &ChecksumCapabilities::default(),
  3525. );
  3526. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3527. let ip_repr = Ipv4Repr {
  3528. src_addr,
  3529. dst_addr,
  3530. next_header: IpProtocol::Udp,
  3531. hop_limit: 64,
  3532. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3533. };
  3534. #[cfg(feature = "proto-ipv6")]
  3535. let ip_repr = Ipv6Repr {
  3536. src_addr,
  3537. dst_addr,
  3538. next_header: IpProtocol::Udp,
  3539. hop_limit: 64,
  3540. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3541. };
  3542. let payload = packet.into_inner();
  3543. // Expected packets
  3544. #[cfg(feature = "proto-ipv6")]
  3545. let expected_icmp_repr = Icmpv6Repr::DstUnreachable {
  3546. reason: Icmpv6DstUnreachable::PortUnreachable,
  3547. header: ip_repr,
  3548. data: &payload[..MAX_PAYLOAD_LEN],
  3549. };
  3550. #[cfg(feature = "proto-ipv6")]
  3551. let expected_ip_repr = Ipv6Repr {
  3552. src_addr: dst_addr,
  3553. dst_addr: src_addr,
  3554. next_header: IpProtocol::Icmpv6,
  3555. hop_limit: 64,
  3556. payload_len: expected_icmp_repr.buffer_len(),
  3557. };
  3558. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3559. let expected_icmp_repr = Icmpv4Repr::DstUnreachable {
  3560. reason: Icmpv4DstUnreachable::PortUnreachable,
  3561. header: ip_repr,
  3562. data: &payload[..MAX_PAYLOAD_LEN],
  3563. };
  3564. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3565. let expected_ip_repr = Ipv4Repr {
  3566. src_addr: dst_addr,
  3567. dst_addr: src_addr,
  3568. next_header: IpProtocol::Icmp,
  3569. hop_limit: 64,
  3570. payload_len: expected_icmp_repr.buffer_len(),
  3571. };
  3572. // The expected packet does not exceed the IPV4_MIN_MTU
  3573. #[cfg(feature = "proto-ipv6")]
  3574. assert_eq!(
  3575. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3576. MIN_MTU
  3577. );
  3578. // The expected packet does not exceed the IPV4_MIN_MTU
  3579. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3580. assert_eq!(
  3581. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3582. MIN_MTU
  3583. );
  3584. // The expected packet and the generated packet are equal
  3585. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3586. assert_eq!(
  3587. iface
  3588. .inner
  3589. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3590. Some(IpPacket::Icmpv4((expected_ip_repr, expected_icmp_repr)))
  3591. );
  3592. #[cfg(feature = "proto-ipv6")]
  3593. assert_eq!(
  3594. iface
  3595. .inner
  3596. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3597. Some(IpPacket::Icmpv6((expected_ip_repr, expected_icmp_repr)))
  3598. );
  3599. }
  3600. #[test]
  3601. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3602. fn test_handle_valid_arp_request() {
  3603. let (mut iface, mut sockets, _device) = create_ethernet();
  3604. let mut eth_bytes = vec![0u8; 42];
  3605. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3606. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3607. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3608. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3609. let repr = ArpRepr::EthernetIpv4 {
  3610. operation: ArpOperation::Request,
  3611. source_hardware_addr: remote_hw_addr,
  3612. source_protocol_addr: remote_ip_addr,
  3613. target_hardware_addr: EthernetAddress::default(),
  3614. target_protocol_addr: local_ip_addr,
  3615. };
  3616. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3617. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3618. frame.set_src_addr(remote_hw_addr);
  3619. frame.set_ethertype(EthernetProtocol::Arp);
  3620. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3621. repr.emit(&mut packet);
  3622. // Ensure an ARP Request for us triggers an ARP Reply
  3623. assert_eq!(
  3624. iface
  3625. .inner
  3626. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3627. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3628. operation: ArpOperation::Reply,
  3629. source_hardware_addr: local_hw_addr,
  3630. source_protocol_addr: local_ip_addr,
  3631. target_hardware_addr: remote_hw_addr,
  3632. target_protocol_addr: remote_ip_addr
  3633. }))
  3634. );
  3635. // Ensure the address of the requestor was entered in the cache
  3636. assert_eq!(
  3637. iface.inner.lookup_hardware_addr(
  3638. MockTxToken,
  3639. &IpAddress::Ipv4(local_ip_addr),
  3640. &IpAddress::Ipv4(remote_ip_addr)
  3641. ),
  3642. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3643. );
  3644. }
  3645. #[test]
  3646. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv6"))]
  3647. fn test_handle_valid_ndisc_request() {
  3648. let (mut iface, mut sockets, _device) = create_ethernet();
  3649. let mut eth_bytes = vec![0u8; 86];
  3650. let local_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 1);
  3651. let remote_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 2);
  3652. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3653. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3654. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  3655. target_addr: local_ip_addr,
  3656. lladdr: Some(remote_hw_addr.into()),
  3657. });
  3658. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3659. src_addr: remote_ip_addr,
  3660. dst_addr: local_ip_addr.solicited_node(),
  3661. next_header: IpProtocol::Icmpv6,
  3662. hop_limit: 0xff,
  3663. payload_len: solicit.buffer_len(),
  3664. });
  3665. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3666. frame.set_dst_addr(EthernetAddress([0x33, 0x33, 0x00, 0x00, 0x00, 0x00]));
  3667. frame.set_src_addr(remote_hw_addr);
  3668. frame.set_ethertype(EthernetProtocol::Ipv6);
  3669. ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  3670. solicit.emit(
  3671. &remote_ip_addr.into(),
  3672. &local_ip_addr.solicited_node().into(),
  3673. &mut Icmpv6Packet::new_unchecked(&mut frame.payload_mut()[ip_repr.buffer_len()..]),
  3674. &ChecksumCapabilities::default(),
  3675. );
  3676. let icmpv6_expected = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  3677. flags: NdiscNeighborFlags::SOLICITED,
  3678. target_addr: local_ip_addr,
  3679. lladdr: Some(local_hw_addr.into()),
  3680. });
  3681. let ipv6_expected = Ipv6Repr {
  3682. src_addr: local_ip_addr,
  3683. dst_addr: remote_ip_addr,
  3684. next_header: IpProtocol::Icmpv6,
  3685. hop_limit: 0xff,
  3686. payload_len: icmpv6_expected.buffer_len(),
  3687. };
  3688. // Ensure an Neighbor Solicitation triggers a Neighbor Advertisement
  3689. assert_eq!(
  3690. iface
  3691. .inner
  3692. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3693. Some(EthernetPacket::Ip(IpPacket::Icmpv6((
  3694. ipv6_expected,
  3695. icmpv6_expected
  3696. ))))
  3697. );
  3698. // Ensure the address of the requestor was entered in the cache
  3699. assert_eq!(
  3700. iface.inner.lookup_hardware_addr(
  3701. MockTxToken,
  3702. &IpAddress::Ipv6(local_ip_addr),
  3703. &IpAddress::Ipv6(remote_ip_addr)
  3704. ),
  3705. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3706. );
  3707. }
  3708. #[test]
  3709. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3710. fn test_handle_other_arp_request() {
  3711. let (mut iface, mut sockets, _device) = create_ethernet();
  3712. let mut eth_bytes = vec![0u8; 42];
  3713. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3714. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3715. let repr = ArpRepr::EthernetIpv4 {
  3716. operation: ArpOperation::Request,
  3717. source_hardware_addr: remote_hw_addr,
  3718. source_protocol_addr: remote_ip_addr,
  3719. target_hardware_addr: EthernetAddress::default(),
  3720. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x03]),
  3721. };
  3722. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3723. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3724. frame.set_src_addr(remote_hw_addr);
  3725. frame.set_ethertype(EthernetProtocol::Arp);
  3726. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3727. repr.emit(&mut packet);
  3728. // Ensure an ARP Request for someone else does not trigger an ARP Reply
  3729. assert_eq!(
  3730. iface
  3731. .inner
  3732. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3733. None
  3734. );
  3735. // Ensure the address of the requestor was NOT entered in the cache
  3736. assert_eq!(
  3737. iface.inner.lookup_hardware_addr(
  3738. MockTxToken,
  3739. &IpAddress::Ipv4(Ipv4Address([0x7f, 0x00, 0x00, 0x01])),
  3740. &IpAddress::Ipv4(remote_ip_addr)
  3741. ),
  3742. Err(Error::Unaddressable)
  3743. );
  3744. }
  3745. #[test]
  3746. #[cfg(all(
  3747. feature = "medium-ethernet",
  3748. feature = "proto-ipv4",
  3749. not(feature = "medium-ieee802154")
  3750. ))]
  3751. fn test_arp_flush_after_update_ip() {
  3752. let (mut iface, mut sockets, _device) = create_ethernet();
  3753. let mut eth_bytes = vec![0u8; 42];
  3754. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3755. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3756. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3757. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3758. let repr = ArpRepr::EthernetIpv4 {
  3759. operation: ArpOperation::Request,
  3760. source_hardware_addr: remote_hw_addr,
  3761. source_protocol_addr: remote_ip_addr,
  3762. target_hardware_addr: EthernetAddress::default(),
  3763. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3764. };
  3765. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3766. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3767. frame.set_src_addr(remote_hw_addr);
  3768. frame.set_ethertype(EthernetProtocol::Arp);
  3769. {
  3770. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3771. repr.emit(&mut packet);
  3772. }
  3773. // Ensure an ARP Request for us triggers an ARP Reply
  3774. assert_eq!(
  3775. iface
  3776. .inner
  3777. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3778. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3779. operation: ArpOperation::Reply,
  3780. source_hardware_addr: local_hw_addr,
  3781. source_protocol_addr: local_ip_addr,
  3782. target_hardware_addr: remote_hw_addr,
  3783. target_protocol_addr: remote_ip_addr
  3784. }))
  3785. );
  3786. // Ensure the address of the requestor was entered in the cache
  3787. assert_eq!(
  3788. iface.inner.lookup_hardware_addr(
  3789. MockTxToken,
  3790. &IpAddress::Ipv4(local_ip_addr),
  3791. &IpAddress::Ipv4(remote_ip_addr)
  3792. ),
  3793. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3794. );
  3795. // Update IP addrs to trigger ARP cache flush
  3796. let local_ip_addr_new = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3797. iface.update_ip_addrs(|addrs| {
  3798. addrs.iter_mut().next().map(|addr| {
  3799. *addr = IpCidr::Ipv4(Ipv4Cidr::new(local_ip_addr_new, 24));
  3800. });
  3801. });
  3802. // ARP cache flush after address change
  3803. assert!(!iface.inner.has_neighbor(&IpAddress::Ipv4(remote_ip_addr)));
  3804. }
  3805. #[test]
  3806. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  3807. fn test_icmpv4_socket() {
  3808. use crate::wire::Icmpv4Packet;
  3809. let (mut iface, mut sockets, _device) = create();
  3810. let rx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3811. let tx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3812. let icmpv4_socket = icmp::Socket::new(rx_buffer, tx_buffer);
  3813. let socket_handle = sockets.add(icmpv4_socket);
  3814. let ident = 0x1234;
  3815. let seq_no = 0x5432;
  3816. let echo_data = &[0xff; 16];
  3817. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3818. // Bind to the ID 0x1234
  3819. assert_eq!(socket.bind(icmp::Endpoint::Ident(ident)), Ok(()));
  3820. // Ensure the ident we bound to and the ident of the packet are the same.
  3821. let mut bytes = [0xff; 24];
  3822. let mut packet = Icmpv4Packet::new_unchecked(&mut bytes[..]);
  3823. let echo_repr = Icmpv4Repr::EchoRequest {
  3824. ident,
  3825. seq_no,
  3826. data: echo_data,
  3827. };
  3828. echo_repr.emit(&mut packet, &ChecksumCapabilities::default());
  3829. let icmp_data = &*packet.into_inner();
  3830. let ipv4_repr = Ipv4Repr {
  3831. src_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x02),
  3832. dst_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x01),
  3833. next_header: IpProtocol::Icmp,
  3834. payload_len: 24,
  3835. hop_limit: 64,
  3836. };
  3837. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  3838. // Open a socket and ensure the packet is handled due to the listening
  3839. // socket.
  3840. assert!(!sockets.get_mut::<icmp::Socket>(socket_handle).can_recv());
  3841. // Confirm we still get EchoReply from `smoltcp` even with the ICMP socket listening
  3842. let echo_reply = Icmpv4Repr::EchoReply {
  3843. ident,
  3844. seq_no,
  3845. data: echo_data,
  3846. };
  3847. let ipv4_reply = Ipv4Repr {
  3848. src_addr: ipv4_repr.dst_addr,
  3849. dst_addr: ipv4_repr.src_addr,
  3850. ..ipv4_repr
  3851. };
  3852. assert_eq!(
  3853. iface.inner.process_icmpv4(&mut sockets, ip_repr, icmp_data),
  3854. Some(IpPacket::Icmpv4((ipv4_reply, echo_reply)))
  3855. );
  3856. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3857. assert!(socket.can_recv());
  3858. assert_eq!(
  3859. socket.recv(),
  3860. Ok((
  3861. icmp_data,
  3862. IpAddress::Ipv4(Ipv4Address::new(0x7f, 0x00, 0x00, 0x02))
  3863. ))
  3864. );
  3865. }
  3866. #[test]
  3867. #[cfg(feature = "proto-ipv6")]
  3868. fn test_solicited_node_addrs() {
  3869. let (mut iface, _, _device) = create();
  3870. let mut new_addrs = vec![
  3871. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 1, 2, 0, 2), 64),
  3872. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 3, 4, 0, 0xffff), 64),
  3873. ];
  3874. iface.update_ip_addrs(|addrs| {
  3875. new_addrs.extend(addrs.to_vec());
  3876. *addrs = From::from(new_addrs);
  3877. });
  3878. assert!(iface
  3879. .inner
  3880. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0002)));
  3881. assert!(iface
  3882. .inner
  3883. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0xffff)));
  3884. assert!(!iface
  3885. .inner
  3886. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0003)));
  3887. }
  3888. #[test]
  3889. #[cfg(feature = "proto-ipv6")]
  3890. fn test_icmpv6_nxthdr_unknown() {
  3891. let (mut iface, mut sockets, _device) = create();
  3892. let remote_ip_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3893. let payload = [0x12, 0x34, 0x56, 0x78];
  3894. let ipv6_repr = Ipv6Repr {
  3895. src_addr: remote_ip_addr,
  3896. dst_addr: Ipv6Address::LOOPBACK,
  3897. next_header: IpProtocol::HopByHop,
  3898. payload_len: 12,
  3899. hop_limit: 0x40,
  3900. };
  3901. let mut bytes = vec![0; 52];
  3902. let frame = {
  3903. let ip_repr = IpRepr::Ipv6(ipv6_repr);
  3904. ip_repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3905. let mut offset = ipv6_repr.buffer_len();
  3906. {
  3907. let mut hbh_pkt = Ipv6HopByHopHeader::new_unchecked(&mut bytes[offset..]);
  3908. hbh_pkt.set_next_header(IpProtocol::Unknown(0x0c));
  3909. hbh_pkt.set_header_len(0);
  3910. offset += 8;
  3911. {
  3912. let mut pad_pkt = Ipv6Option::new_unchecked(&mut *hbh_pkt.options_mut());
  3913. Ipv6OptionRepr::PadN(3).emit(&mut pad_pkt);
  3914. }
  3915. {
  3916. let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[5..]);
  3917. Ipv6OptionRepr::Pad1.emit(&mut pad_pkt);
  3918. }
  3919. }
  3920. bytes[offset..].copy_from_slice(&payload);
  3921. Ipv6Packet::new_unchecked(&bytes)
  3922. };
  3923. let reply_icmp_repr = Icmpv6Repr::ParamProblem {
  3924. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  3925. pointer: 40,
  3926. header: ipv6_repr,
  3927. data: &payload[..],
  3928. };
  3929. let reply_ipv6_repr = Ipv6Repr {
  3930. src_addr: Ipv6Address::LOOPBACK,
  3931. dst_addr: remote_ip_addr,
  3932. next_header: IpProtocol::Icmpv6,
  3933. payload_len: reply_icmp_repr.buffer_len(),
  3934. hop_limit: 0x40,
  3935. };
  3936. // Ensure the unknown next header causes a ICMPv6 Parameter Problem
  3937. // error message to be sent to the sender.
  3938. assert_eq!(
  3939. iface.inner.process_ipv6(&mut sockets, &frame),
  3940. Some(IpPacket::Icmpv6((reply_ipv6_repr, reply_icmp_repr)))
  3941. );
  3942. }
  3943. #[test]
  3944. #[cfg(feature = "proto-igmp")]
  3945. fn test_handle_igmp() {
  3946. fn recv_igmp(device: &mut Loopback, timestamp: Instant) -> Vec<(Ipv4Repr, IgmpRepr)> {
  3947. let caps = device.capabilities();
  3948. let checksum_caps = &caps.checksum;
  3949. recv_all(device, timestamp)
  3950. .iter()
  3951. .filter_map(|frame| {
  3952. let ipv4_packet = match caps.medium {
  3953. #[cfg(feature = "medium-ethernet")]
  3954. Medium::Ethernet => {
  3955. let eth_frame = EthernetFrame::new_checked(frame).ok()?;
  3956. Ipv4Packet::new_checked(eth_frame.payload()).ok()?
  3957. }
  3958. #[cfg(feature = "medium-ip")]
  3959. Medium::Ip => Ipv4Packet::new_checked(&frame[..]).ok()?,
  3960. #[cfg(feature = "medium-ieee802154")]
  3961. Medium::Ieee802154 => todo!(),
  3962. };
  3963. let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, checksum_caps).ok()?;
  3964. let ip_payload = ipv4_packet.payload();
  3965. let igmp_packet = IgmpPacket::new_checked(ip_payload).ok()?;
  3966. let igmp_repr = IgmpRepr::parse(&igmp_packet).ok()?;
  3967. Some((ipv4_repr, igmp_repr))
  3968. })
  3969. .collect::<Vec<_>>()
  3970. }
  3971. let groups = [
  3972. Ipv4Address::new(224, 0, 0, 22),
  3973. Ipv4Address::new(224, 0, 0, 56),
  3974. ];
  3975. let (mut iface, mut sockets, mut device) = create();
  3976. // Join multicast groups
  3977. let timestamp = Instant::now();
  3978. for group in &groups {
  3979. iface
  3980. .join_multicast_group(&mut device, *group, timestamp)
  3981. .unwrap();
  3982. }
  3983. let reports = recv_igmp(&mut device, timestamp);
  3984. assert_eq!(reports.len(), 2);
  3985. for (i, group_addr) in groups.iter().enumerate() {
  3986. assert_eq!(reports[i].0.next_header, IpProtocol::Igmp);
  3987. assert_eq!(reports[i].0.dst_addr, *group_addr);
  3988. assert_eq!(
  3989. reports[i].1,
  3990. IgmpRepr::MembershipReport {
  3991. group_addr: *group_addr,
  3992. version: IgmpVersion::Version2,
  3993. }
  3994. );
  3995. }
  3996. // General query
  3997. let timestamp = Instant::now();
  3998. const GENERAL_QUERY_BYTES: &[u8] = &[
  3999. 0x46, 0xc0, 0x00, 0x24, 0xed, 0xb4, 0x00, 0x00, 0x01, 0x02, 0x47, 0x43, 0xac, 0x16,
  4000. 0x63, 0x04, 0xe0, 0x00, 0x00, 0x01, 0x94, 0x04, 0x00, 0x00, 0x11, 0x64, 0xec, 0x8f,
  4001. 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  4002. 0x00, 0x00, 0x00, 0x00,
  4003. ];
  4004. {
  4005. // Transmit GENERAL_QUERY_BYTES into loopback
  4006. let tx_token = device.transmit().unwrap();
  4007. tx_token
  4008. .consume(timestamp, GENERAL_QUERY_BYTES.len(), |buffer| {
  4009. buffer.copy_from_slice(GENERAL_QUERY_BYTES);
  4010. Ok(())
  4011. })
  4012. .unwrap();
  4013. }
  4014. // Trigger processing until all packets received through the
  4015. // loopback have been processed, including responses to
  4016. // GENERAL_QUERY_BYTES. Therefore `recv_all()` would return 0
  4017. // pkts that could be checked.
  4018. iface.socket_ingress(&mut device, &mut sockets);
  4019. // Leave multicast groups
  4020. let timestamp = Instant::now();
  4021. for group in &groups {
  4022. iface
  4023. .leave_multicast_group(&mut device, *group, timestamp)
  4024. .unwrap();
  4025. }
  4026. let leaves = recv_igmp(&mut device, timestamp);
  4027. assert_eq!(leaves.len(), 2);
  4028. for (i, group_addr) in groups.iter().cloned().enumerate() {
  4029. assert_eq!(leaves[i].0.next_header, IpProtocol::Igmp);
  4030. assert_eq!(leaves[i].0.dst_addr, Ipv4Address::MULTICAST_ALL_ROUTERS);
  4031. assert_eq!(leaves[i].1, IgmpRepr::LeaveGroup { group_addr });
  4032. }
  4033. }
  4034. #[test]
  4035. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))]
  4036. fn test_raw_socket_no_reply() {
  4037. use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4038. let (mut iface, mut sockets, _device) = create();
  4039. let packets = 1;
  4040. let rx_buffer =
  4041. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4042. let tx_buffer = raw::PacketBuffer::new(
  4043. vec![raw::PacketMetadata::EMPTY; packets],
  4044. vec![0; 48 * packets],
  4045. );
  4046. let raw_socket = raw::Socket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer);
  4047. sockets.add(raw_socket);
  4048. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4049. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4050. const PAYLOAD_LEN: usize = 10;
  4051. let udp_repr = UdpRepr {
  4052. src_port: 67,
  4053. dst_port: 68,
  4054. };
  4055. let mut bytes = vec![0xff; udp_repr.header_len() + PAYLOAD_LEN];
  4056. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4057. udp_repr.emit(
  4058. &mut packet,
  4059. &src_addr.into(),
  4060. &dst_addr.into(),
  4061. PAYLOAD_LEN,
  4062. |buf| fill_slice(buf, 0x2a),
  4063. &ChecksumCapabilities::default(),
  4064. );
  4065. let ipv4_repr = Ipv4Repr {
  4066. src_addr,
  4067. dst_addr,
  4068. next_header: IpProtocol::Udp,
  4069. hop_limit: 64,
  4070. payload_len: udp_repr.header_len() + PAYLOAD_LEN,
  4071. };
  4072. // Emit to frame
  4073. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + PAYLOAD_LEN];
  4074. let frame = {
  4075. ipv4_repr.emit(
  4076. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4077. &ChecksumCapabilities::default(),
  4078. );
  4079. udp_repr.emit(
  4080. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4081. &src_addr.into(),
  4082. &dst_addr.into(),
  4083. PAYLOAD_LEN,
  4084. |buf| fill_slice(buf, 0x2a),
  4085. &ChecksumCapabilities::default(),
  4086. );
  4087. Ipv4Packet::new_unchecked(&bytes)
  4088. };
  4089. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4090. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4091. #[cfg(feature = "proto-ipv4-fragmentation")]
  4092. assert_eq!(
  4093. iface.inner.process_ipv4(
  4094. &mut sockets,
  4095. &frame,
  4096. Some(&mut iface.fragments.ipv4_fragments)
  4097. ),
  4098. None
  4099. );
  4100. }
  4101. #[test]
  4102. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw", feature = "socket-udp"))]
  4103. fn test_raw_socket_with_udp_socket() {
  4104. use crate::wire::{IpEndpoint, IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4105. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  4106. let (mut iface, mut sockets, _device) = create();
  4107. let udp_rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4108. let udp_tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4109. let udp_socket = udp::Socket::new(udp_rx_buffer, udp_tx_buffer);
  4110. let udp_socket_handle = sockets.add(udp_socket);
  4111. // Bind the socket to port 68
  4112. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4113. assert_eq!(socket.bind(68), Ok(()));
  4114. assert!(!socket.can_recv());
  4115. assert!(socket.can_send());
  4116. let packets = 1;
  4117. let raw_rx_buffer =
  4118. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4119. let raw_tx_buffer = raw::PacketBuffer::new(
  4120. vec![raw::PacketMetadata::EMPTY; packets],
  4121. vec![0; 48 * packets],
  4122. );
  4123. let raw_socket = raw::Socket::new(
  4124. IpVersion::Ipv4,
  4125. IpProtocol::Udp,
  4126. raw_rx_buffer,
  4127. raw_tx_buffer,
  4128. );
  4129. sockets.add(raw_socket);
  4130. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4131. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4132. let udp_repr = UdpRepr {
  4133. src_port: 67,
  4134. dst_port: 68,
  4135. };
  4136. let mut bytes = vec![0xff; udp_repr.header_len() + UDP_PAYLOAD.len()];
  4137. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4138. udp_repr.emit(
  4139. &mut packet,
  4140. &src_addr.into(),
  4141. &dst_addr.into(),
  4142. UDP_PAYLOAD.len(),
  4143. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4144. &ChecksumCapabilities::default(),
  4145. );
  4146. let ipv4_repr = Ipv4Repr {
  4147. src_addr,
  4148. dst_addr,
  4149. next_header: IpProtocol::Udp,
  4150. hop_limit: 64,
  4151. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  4152. };
  4153. // Emit to frame
  4154. let mut bytes =
  4155. vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + UDP_PAYLOAD.len()];
  4156. let frame = {
  4157. ipv4_repr.emit(
  4158. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4159. &ChecksumCapabilities::default(),
  4160. );
  4161. udp_repr.emit(
  4162. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4163. &src_addr.into(),
  4164. &dst_addr.into(),
  4165. UDP_PAYLOAD.len(),
  4166. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4167. &ChecksumCapabilities::default(),
  4168. );
  4169. Ipv4Packet::new_unchecked(&bytes)
  4170. };
  4171. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4172. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4173. #[cfg(feature = "proto-ipv4-fragmentation")]
  4174. assert_eq!(
  4175. iface.inner.process_ipv4(
  4176. &mut sockets,
  4177. &frame,
  4178. Some(&mut iface.fragments.ipv4_fragments)
  4179. ),
  4180. None
  4181. );
  4182. // Make sure the UDP socket can still receive in presence of a Raw socket that handles UDP
  4183. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4184. assert!(socket.can_recv());
  4185. assert_eq!(
  4186. socket.recv(),
  4187. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_addr.into(), 67)))
  4188. );
  4189. }
  4190. }