interface.rs 176 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696
  1. // Heads up! Before working on this file you should read the parts
  2. // of RFC 1122 that discuss Ethernet, ARP and IP for any IPv4 work
  3. // and RFCs 8200 and 4861 for any IPv6 and NDISC work.
  4. use core::cmp;
  5. use managed::{ManagedMap, ManagedSlice};
  6. #[cfg(any(feature = "proto-ipv4", feature = "proto-sixlowpan"))]
  7. use super::fragmentation::PacketAssemblerSet;
  8. use super::socket_set::SocketSet;
  9. use crate::iface::Routes;
  10. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  11. use crate::iface::{NeighborAnswer, NeighborCache};
  12. use crate::phy::{ChecksumCapabilities, Device, DeviceCapabilities, Medium, RxToken, TxToken};
  13. use crate::rand::Rand;
  14. #[cfg(feature = "socket-dhcpv4")]
  15. use crate::socket::dhcpv4;
  16. #[cfg(feature = "socket-dns")]
  17. use crate::socket::dns;
  18. use crate::socket::*;
  19. use crate::time::{Duration, Instant};
  20. use crate::wire::*;
  21. use crate::{Error, Result};
  22. pub(crate) struct FragmentsBuffer<'a> {
  23. #[cfg(feature = "proto-ipv4-fragmentation")]
  24. ipv4_fragments: PacketAssemblerSet<'a, Ipv4FragKey>,
  25. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  26. sixlowpan_fragments: PacketAssemblerSet<'a, SixlowpanFragKey>,
  27. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  28. sixlowpan_fragments_cache_timeout: Duration,
  29. #[cfg(not(any(
  30. feature = "proto-ipv4-fragmentation",
  31. feature = "proto-sixlowpan-fragmentation"
  32. )))]
  33. _lifetime: core::marker::PhantomData<&'a ()>,
  34. }
  35. pub(crate) struct OutPackets<'a> {
  36. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  37. sixlowpan_out_packet: SixlowpanOutPacket<'a>,
  38. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  39. _lifetime: core::marker::PhantomData<&'a ()>,
  40. }
  41. impl<'a> OutPackets<'a> {
  42. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  43. /// Returns `true` when all the data of the outgoing buffers are transmitted.
  44. fn all_transmitted(&self) -> bool {
  45. self.sixlowpan_out_packet.finished() || self.sixlowpan_out_packet.is_empty()
  46. }
  47. }
  48. #[allow(unused)]
  49. #[cfg(feature = "proto-sixlowpan")]
  50. pub(crate) struct SixlowpanOutPacket<'a> {
  51. /// The buffer that holds the unfragmented 6LoWPAN packet.
  52. buffer: ManagedSlice<'a, u8>,
  53. /// The size of the packet without the IEEE802.15.4 header and the fragmentation headers.
  54. packet_len: usize,
  55. /// The amount of bytes that already have been transmitted.
  56. sent_bytes: usize,
  57. /// The datagram size that is used for the fragmentation headers.
  58. datagram_size: u16,
  59. /// The datagram tag that is used for the fragmentation headers.
  60. datagram_tag: u16,
  61. datagram_offset: usize,
  62. /// The size of the FRAG_N packets.
  63. fragn_size: usize,
  64. /// The link layer IEEE802.15.4 source address.
  65. ll_dst_addr: Ieee802154Address,
  66. /// The link layer IEEE802.15.4 source address.
  67. ll_src_addr: Ieee802154Address,
  68. }
  69. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  70. impl<'a> SixlowpanOutPacket<'a> {
  71. pub(crate) fn new(buffer: ManagedSlice<'a, u8>) -> Self {
  72. Self {
  73. buffer,
  74. packet_len: 0,
  75. datagram_size: 0,
  76. datagram_tag: 0,
  77. datagram_offset: 0,
  78. sent_bytes: 0,
  79. fragn_size: 0,
  80. ll_dst_addr: Ieee802154Address::Absent,
  81. ll_src_addr: Ieee802154Address::Absent,
  82. }
  83. }
  84. /// Return `true` when everything is transmitted.
  85. #[inline]
  86. fn finished(&self) -> bool {
  87. self.packet_len == self.sent_bytes
  88. }
  89. /// Returns `true` when there is nothing to transmit.
  90. #[inline]
  91. fn is_empty(&self) -> bool {
  92. self.packet_len == 0
  93. }
  94. // Reset the buffer.
  95. fn reset(&mut self) {
  96. self.packet_len = 0;
  97. self.datagram_size = 0;
  98. self.datagram_tag = 0;
  99. self.sent_bytes = 0;
  100. self.fragn_size = 0;
  101. self.ll_dst_addr = Ieee802154Address::Absent;
  102. self.ll_src_addr = Ieee802154Address::Absent;
  103. }
  104. }
  105. macro_rules! check {
  106. ($e:expr) => {
  107. match $e {
  108. Ok(x) => x,
  109. Err(_) => {
  110. // concat!/stringify! doesn't work with defmt macros
  111. #[cfg(not(feature = "defmt"))]
  112. net_trace!(concat!("iface: malformed ", stringify!($e)));
  113. #[cfg(feature = "defmt")]
  114. net_trace!("iface: malformed");
  115. return Default::default();
  116. }
  117. }
  118. };
  119. }
  120. /// A network interface.
  121. ///
  122. /// The network interface logically owns a number of other data structures; to avoid
  123. /// a dependency on heap allocation, it instead owns a `BorrowMut<[T]>`, which can be
  124. /// a `&mut [T]`, or `Vec<T>` if a heap is available.
  125. pub struct Interface<'a> {
  126. inner: InterfaceInner<'a>,
  127. fragments: FragmentsBuffer<'a>,
  128. out_packets: OutPackets<'a>,
  129. }
  130. /// The device independent part of an Ethernet network interface.
  131. ///
  132. /// Separating the device from the data required for processing and dispatching makes
  133. /// it possible to borrow them independently. For example, the tx and rx tokens borrow
  134. /// the `device` mutably until they're used, which makes it impossible to call other
  135. /// methods on the `Interface` in this time (since its `device` field is borrowed
  136. /// exclusively). However, it is still possible to call methods on its `inner` field.
  137. pub struct InterfaceInner<'a> {
  138. caps: DeviceCapabilities,
  139. now: Instant,
  140. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  141. neighbor_cache: Option<NeighborCache<'a>>,
  142. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  143. hardware_addr: Option<HardwareAddress>,
  144. #[cfg(feature = "medium-ieee802154")]
  145. sequence_no: u8,
  146. #[cfg(feature = "medium-ieee802154")]
  147. pan_id: Option<Ieee802154Pan>,
  148. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  149. tag: u16,
  150. ip_addrs: ManagedSlice<'a, IpCidr>,
  151. #[cfg(feature = "proto-ipv4")]
  152. any_ip: bool,
  153. routes: Routes<'a>,
  154. #[cfg(feature = "proto-igmp")]
  155. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  156. /// When to report for (all or) the next multicast group membership via IGMP
  157. #[cfg(feature = "proto-igmp")]
  158. igmp_report_state: IgmpReportState,
  159. rand: Rand,
  160. }
  161. /// A builder structure used for creating a network interface.
  162. pub struct InterfaceBuilder<'a> {
  163. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  164. hardware_addr: Option<HardwareAddress>,
  165. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  166. neighbor_cache: Option<NeighborCache<'a>>,
  167. #[cfg(feature = "medium-ieee802154")]
  168. pan_id: Option<Ieee802154Pan>,
  169. ip_addrs: ManagedSlice<'a, IpCidr>,
  170. #[cfg(feature = "proto-ipv4")]
  171. any_ip: bool,
  172. routes: Routes<'a>,
  173. /// Does not share storage with `ipv6_multicast_groups` to avoid IPv6 size overhead.
  174. #[cfg(feature = "proto-igmp")]
  175. ipv4_multicast_groups: ManagedMap<'a, Ipv4Address, ()>,
  176. random_seed: u64,
  177. #[cfg(feature = "proto-ipv4-fragmentation")]
  178. ipv4_fragments: Option<PacketAssemblerSet<'a, Ipv4FragKey>>,
  179. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  180. sixlowpan_fragments: Option<PacketAssemblerSet<'a, SixlowpanFragKey>>,
  181. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  182. sixlowpan_fragments_cache_timeout: Duration,
  183. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  184. sixlowpan_out_buffer: Option<ManagedSlice<'a, u8>>,
  185. }
  186. impl<'a> InterfaceBuilder<'a> {
  187. /// Create a builder used for creating a network interface using the
  188. /// given device and address.
  189. #[cfg_attr(
  190. all(feature = "medium-ethernet", not(feature = "proto-sixlowpan")),
  191. doc = r##"
  192. # Examples
  193. ```
  194. # use std::collections::BTreeMap;
  195. #[cfg(feature = "proto-ipv4-fragmentation")]
  196. use smoltcp::iface::FragmentsCache;
  197. use smoltcp::iface::{InterfaceBuilder, NeighborCache};
  198. # use smoltcp::phy::{Loopback, Medium};
  199. use smoltcp::wire::{EthernetAddress, IpCidr, IpAddress};
  200. let mut device = // ...
  201. # Loopback::new(Medium::Ethernet);
  202. let hw_addr = // ...
  203. # EthernetAddress::default();
  204. let neighbor_cache = // ...
  205. # NeighborCache::new(BTreeMap::new());
  206. # #[cfg(feature = "proto-ipv4-fragmentation")]
  207. # let ipv4_frag_cache = // ...
  208. # FragmentsCache::new(vec![], BTreeMap::new());
  209. let ip_addrs = // ...
  210. # [];
  211. let builder = InterfaceBuilder::new()
  212. .hardware_addr(hw_addr.into())
  213. .neighbor_cache(neighbor_cache)
  214. .ip_addrs(ip_addrs);
  215. # #[cfg(feature = "proto-ipv4-fragmentation")]
  216. let builder = builder.ipv4_fragments_cache(ipv4_frag_cache);
  217. let iface = builder.finalize(&mut device);
  218. ```
  219. "##
  220. )]
  221. #[allow(clippy::new_without_default)]
  222. pub fn new() -> Self {
  223. InterfaceBuilder {
  224. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  225. hardware_addr: None,
  226. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  227. neighbor_cache: None,
  228. #[cfg(feature = "medium-ieee802154")]
  229. pan_id: None,
  230. ip_addrs: ManagedSlice::Borrowed(&mut []),
  231. #[cfg(feature = "proto-ipv4")]
  232. any_ip: false,
  233. routes: Routes::new(ManagedMap::Borrowed(&mut [])),
  234. #[cfg(feature = "proto-igmp")]
  235. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  236. random_seed: 0,
  237. #[cfg(feature = "proto-ipv4-fragmentation")]
  238. ipv4_fragments: None,
  239. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  240. sixlowpan_fragments: None,
  241. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  242. sixlowpan_fragments_cache_timeout: Duration::from_secs(60),
  243. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  244. sixlowpan_out_buffer: None,
  245. }
  246. }
  247. /// Set the random seed for this interface.
  248. ///
  249. /// It is strongly recommended that the random seed is different on each boot,
  250. /// to avoid problems with TCP port/sequence collisions.
  251. ///
  252. /// The seed doesn't have to be cryptographically secure.
  253. pub fn random_seed(mut self, random_seed: u64) -> Self {
  254. self.random_seed = random_seed;
  255. self
  256. }
  257. /// Set the Hardware address the interface will use. See also
  258. /// [hardware_addr].
  259. ///
  260. /// # Panics
  261. /// This function panics if the address is not unicast.
  262. ///
  263. /// [hardware_addr]: struct.Interface.html#method.hardware_addr
  264. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  265. pub fn hardware_addr(mut self, addr: HardwareAddress) -> Self {
  266. InterfaceInner::check_hardware_addr(&addr);
  267. self.hardware_addr = Some(addr);
  268. self
  269. }
  270. /// Set the IEEE802.15.4 PAN ID the interface will use.
  271. ///
  272. /// **NOTE**: we use the same PAN ID for destination and source.
  273. #[cfg(feature = "medium-ieee802154")]
  274. pub fn pan_id(mut self, pan_id: Ieee802154Pan) -> Self {
  275. self.pan_id = Some(pan_id);
  276. self
  277. }
  278. /// Set the IP addresses the interface will use. See also
  279. /// [ip_addrs].
  280. ///
  281. /// # Panics
  282. /// This function panics if any of the addresses are not unicast.
  283. ///
  284. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  285. pub fn ip_addrs<T>(mut self, ip_addrs: T) -> Self
  286. where
  287. T: Into<ManagedSlice<'a, IpCidr>>,
  288. {
  289. let ip_addrs = ip_addrs.into();
  290. InterfaceInner::check_ip_addrs(&ip_addrs);
  291. self.ip_addrs = ip_addrs;
  292. self
  293. }
  294. /// Enable or disable the AnyIP capability, allowing packets to be received
  295. /// locally on IPv4 addresses other than the interface's configured [ip_addrs].
  296. /// When AnyIP is enabled and a route prefix in [routes] specifies one of
  297. /// the interface's [ip_addrs] as its gateway, the interface will accept
  298. /// packets addressed to that prefix.
  299. ///
  300. /// # IPv6
  301. ///
  302. /// This option is not available or required for IPv6 as packets sent to
  303. /// the interface are not filtered by IPv6 address.
  304. ///
  305. /// [routes]: struct.Interface.html#method.routes
  306. /// [ip_addrs]: struct.Interface.html#method.ip_addrs
  307. #[cfg(feature = "proto-ipv4")]
  308. pub fn any_ip(mut self, enabled: bool) -> Self {
  309. self.any_ip = enabled;
  310. self
  311. }
  312. /// Set the IP routes the interface will use. See also
  313. /// [routes].
  314. ///
  315. /// [routes]: struct.Interface.html#method.routes
  316. pub fn routes<T>(mut self, routes: T) -> InterfaceBuilder<'a>
  317. where
  318. T: Into<Routes<'a>>,
  319. {
  320. self.routes = routes.into();
  321. self
  322. }
  323. /// Provide storage for multicast groups.
  324. ///
  325. /// Join multicast groups by calling [`join_multicast_group()`] on an `Interface`.
  326. /// Using [`join_multicast_group()`] will send initial membership reports.
  327. ///
  328. /// A previously destroyed interface can be recreated by reusing the multicast group
  329. /// storage, i.e. providing a non-empty storage to `ipv4_multicast_groups()`.
  330. /// Note that this way initial membership reports are **not** sent.
  331. ///
  332. /// [`join_multicast_group()`]: struct.Interface.html#method.join_multicast_group
  333. #[cfg(feature = "proto-igmp")]
  334. pub fn ipv4_multicast_groups<T>(mut self, ipv4_multicast_groups: T) -> Self
  335. where
  336. T: Into<ManagedMap<'a, Ipv4Address, ()>>,
  337. {
  338. self.ipv4_multicast_groups = ipv4_multicast_groups.into();
  339. self
  340. }
  341. /// Set the Neighbor Cache the interface will use.
  342. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  343. pub fn neighbor_cache(mut self, neighbor_cache: NeighborCache<'a>) -> Self {
  344. self.neighbor_cache = Some(neighbor_cache);
  345. self
  346. }
  347. #[cfg(feature = "proto-ipv4-fragmentation")]
  348. pub fn ipv4_fragments_cache(mut self, storage: PacketAssemblerSet<'a, Ipv4FragKey>) -> Self {
  349. self.ipv4_fragments = Some(storage);
  350. self
  351. }
  352. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  353. pub fn sixlowpan_fragments_cache(
  354. mut self,
  355. storage: PacketAssemblerSet<'a, SixlowpanFragKey>,
  356. ) -> Self {
  357. self.sixlowpan_fragments = Some(storage);
  358. self
  359. }
  360. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  361. pub fn sixlowpan_fragments_cache_timeout(mut self, timeout: Duration) -> Self {
  362. if timeout > Duration::from_secs(60) {
  363. net_debug!("RFC 4944 specifies that the reassembly timeout MUST be set to a maximum of 60 seconds");
  364. }
  365. self.sixlowpan_fragments_cache_timeout = timeout;
  366. self
  367. }
  368. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  369. pub fn sixlowpan_out_packet_cache<T>(mut self, storage: T) -> Self
  370. where
  371. T: Into<ManagedSlice<'a, u8>>,
  372. {
  373. self.sixlowpan_out_buffer = Some(storage.into());
  374. self
  375. }
  376. /// Create a network interface using the previously provided configuration.
  377. ///
  378. /// # Panics
  379. /// If a required option is not provided, this function will panic. Required
  380. /// options are:
  381. ///
  382. /// - [ethernet_addr]
  383. /// - [neighbor_cache]
  384. ///
  385. /// [ethernet_addr]: #method.ethernet_addr
  386. /// [neighbor_cache]: #method.neighbor_cache
  387. pub fn finalize<D>(self, device: &mut D) -> Interface<'a>
  388. where
  389. D: for<'d> Device<'d>,
  390. {
  391. let caps = device.capabilities();
  392. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  393. let (hardware_addr, neighbor_cache) = match caps.medium {
  394. #[cfg(feature = "medium-ethernet")]
  395. Medium::Ethernet => (
  396. Some(
  397. self.hardware_addr
  398. .expect("hardware_addr required option was not set"),
  399. ),
  400. Some(
  401. self.neighbor_cache
  402. .expect("neighbor_cache required option was not set"),
  403. ),
  404. ),
  405. #[cfg(feature = "medium-ip")]
  406. Medium::Ip => {
  407. assert!(
  408. self.hardware_addr.is_none(),
  409. "hardware_addr is set, but device medium is IP"
  410. );
  411. assert!(
  412. self.neighbor_cache.is_none(),
  413. "neighbor_cache is set, but device medium is IP"
  414. );
  415. (None, None)
  416. }
  417. #[cfg(feature = "medium-ieee802154")]
  418. Medium::Ieee802154 => (
  419. Some(
  420. self.hardware_addr
  421. .expect("hardware_addr required option was not set"),
  422. ),
  423. Some(
  424. self.neighbor_cache
  425. .expect("neighbor_cache required option was not set"),
  426. ),
  427. ),
  428. };
  429. #[cfg(feature = "medium-ieee802154")]
  430. let mut rand = Rand::new(self.random_seed);
  431. #[cfg(not(feature = "medium-ieee802154"))]
  432. let rand = Rand::new(self.random_seed);
  433. #[cfg(feature = "medium-ieee802154")]
  434. let mut sequence_no;
  435. #[cfg(feature = "medium-ieee802154")]
  436. loop {
  437. sequence_no = (rand.rand_u32() & 0xff) as u8;
  438. if sequence_no != 0 {
  439. break;
  440. }
  441. }
  442. #[cfg(feature = "proto-sixlowpan")]
  443. let mut tag;
  444. #[cfg(feature = "proto-sixlowpan")]
  445. loop {
  446. tag = (rand.rand_u32() & 0xffff) as u16;
  447. if tag != 0 {
  448. break;
  449. }
  450. }
  451. Interface {
  452. fragments: FragmentsBuffer {
  453. #[cfg(feature = "proto-ipv4-fragmentation")]
  454. ipv4_fragments: self
  455. .ipv4_fragments
  456. .expect("Cache for incoming IPv4 fragments is required"),
  457. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  458. sixlowpan_fragments: self
  459. .sixlowpan_fragments
  460. .expect("Cache for incoming 6LoWPAN fragments is required"),
  461. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  462. sixlowpan_fragments_cache_timeout: self.sixlowpan_fragments_cache_timeout,
  463. #[cfg(not(any(
  464. feature = "proto-ipv4-fragmentation",
  465. feature = "proto-sixlowpan-fragmentation"
  466. )))]
  467. _lifetime: core::marker::PhantomData,
  468. },
  469. out_packets: OutPackets {
  470. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  471. sixlowpan_out_packet: SixlowpanOutPacket::new(
  472. self.sixlowpan_out_buffer
  473. .expect("Cache for outgoing 6LoWPAN fragments is required"),
  474. ),
  475. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  476. _lifetime: core::marker::PhantomData,
  477. },
  478. inner: InterfaceInner {
  479. now: Instant::from_secs(0),
  480. caps,
  481. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  482. hardware_addr,
  483. ip_addrs: self.ip_addrs,
  484. #[cfg(feature = "proto-ipv4")]
  485. any_ip: self.any_ip,
  486. routes: self.routes,
  487. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  488. neighbor_cache,
  489. #[cfg(feature = "proto-igmp")]
  490. ipv4_multicast_groups: self.ipv4_multicast_groups,
  491. #[cfg(feature = "proto-igmp")]
  492. igmp_report_state: IgmpReportState::Inactive,
  493. #[cfg(feature = "medium-ieee802154")]
  494. sequence_no,
  495. #[cfg(feature = "medium-ieee802154")]
  496. pan_id: self.pan_id,
  497. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  498. tag,
  499. rand,
  500. },
  501. }
  502. }
  503. }
  504. #[derive(Debug, PartialEq)]
  505. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  506. #[cfg(feature = "medium-ethernet")]
  507. enum EthernetPacket<'a> {
  508. #[cfg(feature = "proto-ipv4")]
  509. Arp(ArpRepr),
  510. Ip(IpPacket<'a>),
  511. }
  512. #[derive(Debug, PartialEq)]
  513. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  514. pub(crate) enum IpPacket<'a> {
  515. #[cfg(feature = "proto-ipv4")]
  516. Icmpv4((Ipv4Repr, Icmpv4Repr<'a>)),
  517. #[cfg(feature = "proto-igmp")]
  518. Igmp((Ipv4Repr, IgmpRepr)),
  519. #[cfg(feature = "proto-ipv6")]
  520. Icmpv6((Ipv6Repr, Icmpv6Repr<'a>)),
  521. #[cfg(feature = "socket-raw")]
  522. Raw((IpRepr, &'a [u8])),
  523. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  524. Udp((IpRepr, UdpRepr, &'a [u8])),
  525. #[cfg(feature = "socket-tcp")]
  526. Tcp((IpRepr, TcpRepr<'a>)),
  527. #[cfg(feature = "socket-dhcpv4")]
  528. Dhcpv4((Ipv4Repr, UdpRepr, DhcpRepr<'a>)),
  529. }
  530. impl<'a> IpPacket<'a> {
  531. pub(crate) fn ip_repr(&self) -> IpRepr {
  532. match self {
  533. #[cfg(feature = "proto-ipv4")]
  534. IpPacket::Icmpv4((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  535. #[cfg(feature = "proto-igmp")]
  536. IpPacket::Igmp((ipv4_repr, _)) => IpRepr::Ipv4(*ipv4_repr),
  537. #[cfg(feature = "proto-ipv6")]
  538. IpPacket::Icmpv6((ipv6_repr, _)) => IpRepr::Ipv6(*ipv6_repr),
  539. #[cfg(feature = "socket-raw")]
  540. IpPacket::Raw((ip_repr, _)) => ip_repr.clone(),
  541. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  542. IpPacket::Udp((ip_repr, _, _)) => ip_repr.clone(),
  543. #[cfg(feature = "socket-tcp")]
  544. IpPacket::Tcp((ip_repr, _)) => ip_repr.clone(),
  545. #[cfg(feature = "socket-dhcpv4")]
  546. IpPacket::Dhcpv4((ipv4_repr, _, _)) => IpRepr::Ipv4(*ipv4_repr),
  547. }
  548. }
  549. pub(crate) fn emit_payload(
  550. &self,
  551. _ip_repr: IpRepr,
  552. payload: &mut [u8],
  553. caps: &DeviceCapabilities,
  554. ) {
  555. match self {
  556. #[cfg(feature = "proto-ipv4")]
  557. IpPacket::Icmpv4((_, icmpv4_repr)) => {
  558. icmpv4_repr.emit(&mut Icmpv4Packet::new_unchecked(payload), &caps.checksum)
  559. }
  560. #[cfg(feature = "proto-igmp")]
  561. IpPacket::Igmp((_, igmp_repr)) => {
  562. igmp_repr.emit(&mut IgmpPacket::new_unchecked(payload))
  563. }
  564. #[cfg(feature = "proto-ipv6")]
  565. IpPacket::Icmpv6((_, icmpv6_repr)) => icmpv6_repr.emit(
  566. &_ip_repr.src_addr(),
  567. &_ip_repr.dst_addr(),
  568. &mut Icmpv6Packet::new_unchecked(payload),
  569. &caps.checksum,
  570. ),
  571. #[cfg(feature = "socket-raw")]
  572. IpPacket::Raw((_, raw_packet)) => payload.copy_from_slice(raw_packet),
  573. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  574. IpPacket::Udp((_, udp_repr, inner_payload)) => udp_repr.emit(
  575. &mut UdpPacket::new_unchecked(payload),
  576. &_ip_repr.src_addr(),
  577. &_ip_repr.dst_addr(),
  578. inner_payload.len(),
  579. |buf| buf.copy_from_slice(inner_payload),
  580. &caps.checksum,
  581. ),
  582. #[cfg(feature = "socket-tcp")]
  583. IpPacket::Tcp((_, mut tcp_repr)) => {
  584. // This is a terrible hack to make TCP performance more acceptable on systems
  585. // where the TCP buffers are significantly larger than network buffers,
  586. // e.g. a 64 kB TCP receive buffer (and so, when empty, a 64k window)
  587. // together with four 1500 B Ethernet receive buffers. If left untreated,
  588. // this would result in our peer pushing our window and sever packet loss.
  589. //
  590. // I'm really not happy about this "solution" but I don't know what else to do.
  591. if let Some(max_burst_size) = caps.max_burst_size {
  592. let mut max_segment_size = caps.max_transmission_unit;
  593. max_segment_size -= _ip_repr.buffer_len();
  594. max_segment_size -= tcp_repr.header_len();
  595. let max_window_size = max_burst_size * max_segment_size;
  596. if tcp_repr.window_len as usize > max_window_size {
  597. tcp_repr.window_len = max_window_size as u16;
  598. }
  599. }
  600. tcp_repr.emit(
  601. &mut TcpPacket::new_unchecked(payload),
  602. &_ip_repr.src_addr(),
  603. &_ip_repr.dst_addr(),
  604. &caps.checksum,
  605. );
  606. }
  607. #[cfg(feature = "socket-dhcpv4")]
  608. IpPacket::Dhcpv4((_, udp_repr, dhcp_repr)) => udp_repr.emit(
  609. &mut UdpPacket::new_unchecked(payload),
  610. &_ip_repr.src_addr(),
  611. &_ip_repr.dst_addr(),
  612. dhcp_repr.buffer_len(),
  613. |buf| dhcp_repr.emit(&mut DhcpPacket::new_unchecked(buf)).unwrap(),
  614. &caps.checksum,
  615. ),
  616. }
  617. }
  618. }
  619. #[cfg(any(feature = "proto-ipv4", feature = "proto-ipv6"))]
  620. fn icmp_reply_payload_len(len: usize, mtu: usize, header_len: usize) -> usize {
  621. // Send back as much of the original payload as will fit within
  622. // the minimum MTU required by IPv4. See RFC 1812 § 4.3.2.3 for
  623. // more details.
  624. //
  625. // Since the entire network layer packet must fit within the minimum
  626. // MTU supported, the payload must not exceed the following:
  627. //
  628. // <min mtu> - IP Header Size * 2 - ICMPv4 DstUnreachable hdr size
  629. cmp::min(len, mtu - header_len * 2 - 8)
  630. }
  631. #[cfg(feature = "proto-igmp")]
  632. enum IgmpReportState {
  633. Inactive,
  634. ToGeneralQuery {
  635. version: IgmpVersion,
  636. timeout: Instant,
  637. interval: Duration,
  638. next_index: usize,
  639. },
  640. ToSpecificQuery {
  641. version: IgmpVersion,
  642. timeout: Instant,
  643. group: Ipv4Address,
  644. },
  645. }
  646. impl<'a> Interface<'a> {
  647. /// Get the socket context.
  648. ///
  649. /// The context is needed for some socket methods.
  650. pub fn context(&mut self) -> &mut InterfaceInner<'a> {
  651. &mut self.inner
  652. }
  653. /// Get the HardwareAddress address of the interface.
  654. ///
  655. /// # Panics
  656. /// This function panics if the medium is not Ethernet or Ieee802154.
  657. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  658. pub fn hardware_addr(&self) -> HardwareAddress {
  659. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  660. assert!(self.inner.caps.medium == Medium::Ethernet);
  661. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  662. assert!(self.inner.caps.medium == Medium::Ieee802154);
  663. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  664. assert!(
  665. self.inner.caps.medium == Medium::Ethernet
  666. || self.inner.caps.medium == Medium::Ieee802154
  667. );
  668. self.inner.hardware_addr.unwrap()
  669. }
  670. /// Set the HardwareAddress address of the interface.
  671. ///
  672. /// # Panics
  673. /// This function panics if the address is not unicast, and if the medium is not Ethernet or
  674. /// Ieee802154.
  675. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  676. pub fn set_hardware_addr(&mut self, addr: HardwareAddress) {
  677. #[cfg(all(feature = "medium-ethernet", not(feature = "medium-ieee802154")))]
  678. assert!(self.inner.caps.medium == Medium::Ethernet);
  679. #[cfg(all(feature = "medium-ieee802154", not(feature = "medium-ethernet")))]
  680. assert!(self.inner.caps.medium == Medium::Ieee802154);
  681. #[cfg(all(feature = "medium-ieee802154", feature = "medium-ethernet"))]
  682. assert!(
  683. self.inner.caps.medium == Medium::Ethernet
  684. || self.inner.caps.medium == Medium::Ieee802154
  685. );
  686. InterfaceInner::check_hardware_addr(&addr);
  687. self.inner.hardware_addr = Some(addr);
  688. }
  689. /// Add an address to a list of subscribed multicast IP addresses.
  690. ///
  691. /// Returns `Ok(announce_sent)` if the address was added successfully, where `annouce_sent`
  692. /// indicates whether an initial immediate announcement has been sent.
  693. pub fn join_multicast_group<D, T: Into<IpAddress>>(
  694. &mut self,
  695. device: &mut D,
  696. addr: T,
  697. timestamp: Instant,
  698. ) -> Result<bool>
  699. where
  700. D: for<'d> Device<'d>,
  701. {
  702. self.inner.now = timestamp;
  703. match addr.into() {
  704. #[cfg(feature = "proto-igmp")]
  705. IpAddress::Ipv4(addr) => {
  706. let is_not_new = self
  707. .inner
  708. .ipv4_multicast_groups
  709. .insert(addr, ())
  710. .map_err(|_| Error::Exhausted)?
  711. .is_some();
  712. if is_not_new {
  713. Ok(false)
  714. } else if let Some(pkt) = self.inner.igmp_report_packet(IgmpVersion::Version2, addr)
  715. {
  716. // Send initial membership report
  717. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  718. self.inner.dispatch_ip(tx_token, pkt, None)?;
  719. Ok(true)
  720. } else {
  721. Ok(false)
  722. }
  723. }
  724. // Multicast is not yet implemented for other address families
  725. #[allow(unreachable_patterns)]
  726. _ => Err(Error::Unaddressable),
  727. }
  728. }
  729. /// Remove an address from the subscribed multicast IP addresses.
  730. ///
  731. /// Returns `Ok(leave_sent)` if the address was removed successfully, where `leave_sent`
  732. /// indicates whether an immediate leave packet has been sent.
  733. pub fn leave_multicast_group<D, T: Into<IpAddress>>(
  734. &mut self,
  735. device: &mut D,
  736. addr: T,
  737. timestamp: Instant,
  738. ) -> Result<bool>
  739. where
  740. D: for<'d> Device<'d>,
  741. {
  742. self.inner.now = timestamp;
  743. match addr.into() {
  744. #[cfg(feature = "proto-igmp")]
  745. IpAddress::Ipv4(addr) => {
  746. let was_not_present = self.inner.ipv4_multicast_groups.remove(&addr).is_none();
  747. if was_not_present {
  748. Ok(false)
  749. } else if let Some(pkt) = self.inner.igmp_leave_packet(addr) {
  750. // Send group leave packet
  751. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  752. self.inner.dispatch_ip(tx_token, pkt, None)?;
  753. Ok(true)
  754. } else {
  755. Ok(false)
  756. }
  757. }
  758. // Multicast is not yet implemented for other address families
  759. #[allow(unreachable_patterns)]
  760. _ => Err(Error::Unaddressable),
  761. }
  762. }
  763. /// Check whether the interface listens to given destination multicast IP address.
  764. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  765. self.inner.has_multicast_group(addr)
  766. }
  767. /// Get the IP addresses of the interface.
  768. pub fn ip_addrs(&self) -> &[IpCidr] {
  769. self.inner.ip_addrs.as_ref()
  770. }
  771. /// Get the first IPv4 address if present.
  772. #[cfg(feature = "proto-ipv4")]
  773. pub fn ipv4_addr(&self) -> Option<Ipv4Address> {
  774. self.ip_addrs()
  775. .iter()
  776. .find_map(|cidr| match cidr.address() {
  777. IpAddress::Ipv4(addr) => Some(addr),
  778. #[allow(unreachable_patterns)]
  779. _ => None,
  780. })
  781. }
  782. /// Update the IP addresses of the interface.
  783. ///
  784. /// # Panics
  785. /// This function panics if any of the addresses are not unicast.
  786. pub fn update_ip_addrs<F: FnOnce(&mut ManagedSlice<'a, IpCidr>)>(&mut self, f: F) {
  787. f(&mut self.inner.ip_addrs);
  788. InterfaceInner::flush_cache(&mut self.inner);
  789. InterfaceInner::check_ip_addrs(&self.inner.ip_addrs)
  790. }
  791. /// Check whether the interface has the given IP address assigned.
  792. pub fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  793. self.inner.has_ip_addr(addr)
  794. }
  795. /// Get the first IPv4 address of the interface.
  796. #[cfg(feature = "proto-ipv4")]
  797. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  798. self.inner.ipv4_address()
  799. }
  800. pub fn routes(&self) -> &Routes<'a> {
  801. &self.inner.routes
  802. }
  803. pub fn routes_mut(&mut self) -> &mut Routes<'a> {
  804. &mut self.inner.routes
  805. }
  806. /// Transmit packets queued in the given sockets, and receive packets queued
  807. /// in the device.
  808. ///
  809. /// This function returns a boolean value indicating whether any packets were
  810. /// processed or emitted, and thus, whether the readiness of any socket might
  811. /// have changed.
  812. ///
  813. /// # Errors
  814. /// This method will routinely return errors in response to normal network
  815. /// activity as well as certain boundary conditions such as buffer exhaustion.
  816. /// These errors are provided as an aid for troubleshooting, and are meant
  817. /// to be logged and ignored.
  818. ///
  819. /// As a special case, `Err(Error::Unrecognized)` is returned in response to
  820. /// packets containing any unsupported protocol, option, or form, which is
  821. /// a very common occurrence and on a production system it should not even
  822. /// be logged.
  823. pub fn poll<D>(
  824. &mut self,
  825. timestamp: Instant,
  826. device: &mut D,
  827. sockets: &mut SocketSet<'_>,
  828. ) -> Result<bool>
  829. where
  830. D: for<'d> Device<'d>,
  831. {
  832. self.inner.now = timestamp;
  833. #[cfg(feature = "proto-ipv4-fragmentation")]
  834. if let Err(e) = self
  835. .fragments
  836. .ipv4_fragments
  837. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  838. {
  839. return Err(e);
  840. }
  841. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  842. if let Err(e) = self
  843. .fragments
  844. .sixlowpan_fragments
  845. .remove_when(|frag| Ok(timestamp >= frag.expires_at()?))
  846. {
  847. return Err(e);
  848. }
  849. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  850. match self.sixlowpan_egress(device) {
  851. Ok(true) => return Ok(true),
  852. Err(e) => return Err(e),
  853. _ => (),
  854. }
  855. let mut readiness_may_have_changed = false;
  856. loop {
  857. let processed_any = self.socket_ingress(device, sockets);
  858. let emitted_any = self.socket_egress(device, sockets);
  859. #[cfg(feature = "proto-igmp")]
  860. self.igmp_egress(device)?;
  861. if processed_any || emitted_any {
  862. readiness_may_have_changed = true;
  863. } else {
  864. break;
  865. }
  866. }
  867. Ok(readiness_may_have_changed)
  868. }
  869. /// Return a _soft deadline_ for calling [poll] the next time.
  870. /// The [Instant] returned is the time at which you should call [poll] next.
  871. /// It is harmless (but wastes energy) to call it before the [Instant], and
  872. /// potentially harmful (impacting quality of service) to call it after the
  873. /// [Instant]
  874. ///
  875. /// [poll]: #method.poll
  876. /// [Instant]: struct.Instant.html
  877. pub fn poll_at(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Instant> {
  878. self.inner.now = timestamp;
  879. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  880. if !self.out_packets.all_transmitted() {
  881. return Some(Instant::from_millis(0));
  882. }
  883. let inner = &mut self.inner;
  884. sockets
  885. .items()
  886. .filter_map(move |item| {
  887. let socket_poll_at = item.socket.poll_at(inner);
  888. match item
  889. .meta
  890. .poll_at(socket_poll_at, |ip_addr| inner.has_neighbor(&ip_addr))
  891. {
  892. PollAt::Ingress => None,
  893. PollAt::Time(instant) => Some(instant),
  894. PollAt::Now => Some(Instant::from_millis(0)),
  895. }
  896. })
  897. .min()
  898. }
  899. /// Return an _advisory wait time_ for calling [poll] the next time.
  900. /// The [Duration] returned is the time left to wait before calling [poll] next.
  901. /// It is harmless (but wastes energy) to call it before the [Duration] has passed,
  902. /// and potentially harmful (impacting quality of service) to call it after the
  903. /// [Duration] has passed.
  904. ///
  905. /// [poll]: #method.poll
  906. /// [Duration]: struct.Duration.html
  907. pub fn poll_delay(&mut self, timestamp: Instant, sockets: &SocketSet<'_>) -> Option<Duration> {
  908. match self.poll_at(timestamp, sockets) {
  909. Some(poll_at) if timestamp < poll_at => Some(poll_at - timestamp),
  910. Some(_) => Some(Duration::from_millis(0)),
  911. _ => None,
  912. }
  913. }
  914. fn socket_ingress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  915. where
  916. D: for<'d> Device<'d>,
  917. {
  918. let mut processed_any = false;
  919. let Self {
  920. inner,
  921. fragments: ref mut _fragments,
  922. out_packets: _out_packets,
  923. } = self;
  924. while let Some((rx_token, tx_token)) = device.receive() {
  925. let res = rx_token.consume(inner.now, |frame| {
  926. match inner.caps.medium {
  927. #[cfg(feature = "medium-ethernet")]
  928. Medium::Ethernet => {
  929. if let Some(packet) = inner.process_ethernet(sockets, &frame, _fragments) {
  930. if let Err(err) = inner.dispatch(tx_token, packet) {
  931. net_debug!("Failed to send response: {}", err);
  932. }
  933. }
  934. }
  935. #[cfg(feature = "medium-ip")]
  936. Medium::Ip => {
  937. if let Some(packet) = inner.process_ip(sockets, &frame, _fragments) {
  938. if let Err(err) = inner.dispatch_ip(tx_token, packet, None) {
  939. net_debug!("Failed to send response: {}", err);
  940. }
  941. }
  942. }
  943. #[cfg(feature = "medium-ieee802154")]
  944. Medium::Ieee802154 => {
  945. if let Some(packet) = inner.process_ieee802154(sockets, &frame, _fragments)
  946. {
  947. if let Err(err) =
  948. inner.dispatch_ip(tx_token, packet, Some(_out_packets))
  949. {
  950. net_debug!("Failed to send response: {}", err);
  951. }
  952. }
  953. }
  954. }
  955. processed_any = true;
  956. Ok(())
  957. });
  958. if let Err(err) = res {
  959. net_debug!("Failed to consume RX token: {}", err);
  960. }
  961. }
  962. processed_any
  963. }
  964. fn socket_egress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>) -> bool
  965. where
  966. D: for<'d> Device<'d>,
  967. {
  968. let Self {
  969. inner,
  970. out_packets: _out_packets,
  971. ..
  972. } = self;
  973. let _caps = device.capabilities();
  974. let mut emitted_any = false;
  975. for item in sockets.items_mut() {
  976. if !item
  977. .meta
  978. .egress_permitted(inner.now, |ip_addr| inner.has_neighbor(&ip_addr))
  979. {
  980. continue;
  981. }
  982. let mut neighbor_addr = None;
  983. let mut respond = |inner: &mut InterfaceInner, response: IpPacket| {
  984. neighbor_addr = Some(response.ip_repr().dst_addr());
  985. match device.transmit().ok_or(Error::Exhausted) {
  986. Ok(_t) => {
  987. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  988. if let Err(e) = inner.dispatch_ip(_t, response, Some(_out_packets)) {
  989. net_debug!("failed to dispatch IP: {}", e);
  990. return Err(e);
  991. }
  992. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  993. if let Err(e) = inner.dispatch_ip(_t, response, None) {
  994. net_debug!("failed to dispatch IP: {}", e);
  995. return Err(e);
  996. }
  997. emitted_any = true;
  998. }
  999. Err(e) => {
  1000. net_debug!("failed to transmit IP: {}", e);
  1001. return Err(e);
  1002. }
  1003. }
  1004. Ok(())
  1005. };
  1006. let result = match &mut item.socket {
  1007. #[cfg(feature = "socket-raw")]
  1008. Socket::Raw(socket) => socket.dispatch(inner, |inner, response| {
  1009. respond(inner, IpPacket::Raw(response))
  1010. }),
  1011. #[cfg(feature = "socket-icmp")]
  1012. Socket::Icmp(socket) => socket.dispatch(inner, |inner, response| match response {
  1013. #[cfg(feature = "proto-ipv4")]
  1014. (IpRepr::Ipv4(ipv4_repr), IcmpRepr::Ipv4(icmpv4_repr)) => {
  1015. respond(inner, IpPacket::Icmpv4((ipv4_repr, icmpv4_repr)))
  1016. }
  1017. #[cfg(feature = "proto-ipv6")]
  1018. (IpRepr::Ipv6(ipv6_repr), IcmpRepr::Ipv6(icmpv6_repr)) => {
  1019. respond(inner, IpPacket::Icmpv6((ipv6_repr, icmpv6_repr)))
  1020. }
  1021. #[allow(unreachable_patterns)]
  1022. _ => unreachable!(),
  1023. }),
  1024. #[cfg(feature = "socket-udp")]
  1025. Socket::Udp(socket) => socket.dispatch(inner, |inner, response| {
  1026. respond(inner, IpPacket::Udp(response))
  1027. }),
  1028. #[cfg(feature = "socket-tcp")]
  1029. Socket::Tcp(socket) => socket.dispatch(inner, |inner, response| {
  1030. respond(inner, IpPacket::Tcp(response))
  1031. }),
  1032. #[cfg(feature = "socket-dhcpv4")]
  1033. Socket::Dhcpv4(socket) => socket.dispatch(inner, |inner, response| {
  1034. respond(inner, IpPacket::Dhcpv4(response))
  1035. }),
  1036. #[cfg(feature = "socket-dns")]
  1037. Socket::Dns(ref mut socket) => socket.dispatch(inner, |inner, response| {
  1038. respond(inner, IpPacket::Udp(response))
  1039. }),
  1040. };
  1041. match result {
  1042. Err(Error::Exhausted) => break, // Device buffer full.
  1043. Err(Error::Unaddressable) => {
  1044. // `NeighborCache` already takes care of rate limiting the neighbor discovery
  1045. // requests from the socket. However, without an additional rate limiting
  1046. // mechanism, we would spin on every socket that has yet to discover its
  1047. // neighbor.
  1048. item.meta.neighbor_missing(
  1049. inner.now,
  1050. neighbor_addr.expect("non-IP response packet"),
  1051. );
  1052. break;
  1053. }
  1054. Err(err) => {
  1055. net_debug!(
  1056. "{}: cannot dispatch egress packet: {}",
  1057. item.meta.handle,
  1058. err
  1059. );
  1060. }
  1061. Ok(()) => {}
  1062. }
  1063. }
  1064. emitted_any
  1065. }
  1066. /// Depending on `igmp_report_state` and the therein contained
  1067. /// timeouts, send IGMP membership reports.
  1068. #[cfg(feature = "proto-igmp")]
  1069. fn igmp_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1070. where
  1071. D: for<'d> Device<'d>,
  1072. {
  1073. match self.inner.igmp_report_state {
  1074. IgmpReportState::ToSpecificQuery {
  1075. version,
  1076. timeout,
  1077. group,
  1078. } if self.inner.now >= timeout => {
  1079. if let Some(pkt) = self.inner.igmp_report_packet(version, group) {
  1080. // Send initial membership report
  1081. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1082. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1083. }
  1084. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1085. Ok(true)
  1086. }
  1087. IgmpReportState::ToGeneralQuery {
  1088. version,
  1089. timeout,
  1090. interval,
  1091. next_index,
  1092. } if self.inner.now >= timeout => {
  1093. let addr = self
  1094. .inner
  1095. .ipv4_multicast_groups
  1096. .iter()
  1097. .nth(next_index)
  1098. .map(|(addr, ())| *addr);
  1099. match addr {
  1100. Some(addr) => {
  1101. if let Some(pkt) = self.inner.igmp_report_packet(version, addr) {
  1102. // Send initial membership report
  1103. let tx_token = device.transmit().ok_or(Error::Exhausted)?;
  1104. self.inner.dispatch_ip(tx_token, pkt, None)?;
  1105. }
  1106. let next_timeout = (timeout + interval).max(self.inner.now);
  1107. self.inner.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1108. version,
  1109. timeout: next_timeout,
  1110. interval,
  1111. next_index: next_index + 1,
  1112. };
  1113. Ok(true)
  1114. }
  1115. None => {
  1116. self.inner.igmp_report_state = IgmpReportState::Inactive;
  1117. Ok(false)
  1118. }
  1119. }
  1120. }
  1121. _ => Ok(false),
  1122. }
  1123. }
  1124. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1125. fn sixlowpan_egress<D>(&mut self, device: &mut D) -> Result<bool>
  1126. where
  1127. D: for<'d> Device<'d>,
  1128. {
  1129. let SixlowpanOutPacket {
  1130. packet_len,
  1131. sent_bytes,
  1132. ..
  1133. } = &self.out_packets.sixlowpan_out_packet;
  1134. if *packet_len == 0 {
  1135. return Ok(false);
  1136. }
  1137. if *packet_len > *sent_bytes {
  1138. match device.transmit().ok_or(Error::Exhausted) {
  1139. Ok(tx_token) => {
  1140. if let Err(e) = self.inner.dispatch_ieee802154_out_packet(
  1141. tx_token,
  1142. &mut self.out_packets.sixlowpan_out_packet,
  1143. ) {
  1144. net_debug!("failed to transmit: {}", e);
  1145. }
  1146. // Reset the buffer when we transmitted everything.
  1147. if self.out_packets.sixlowpan_out_packet.finished() {
  1148. self.out_packets.sixlowpan_out_packet.reset();
  1149. }
  1150. }
  1151. Err(e) => {
  1152. net_debug!("failed to transmit: {}", e);
  1153. }
  1154. }
  1155. Ok(true)
  1156. } else {
  1157. Ok(false)
  1158. }
  1159. }
  1160. }
  1161. impl<'a> InterfaceInner<'a> {
  1162. #[allow(unused)] // unused depending on which sockets are enabled
  1163. pub(crate) fn now(&self) -> Instant {
  1164. self.now
  1165. }
  1166. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1167. #[allow(unused)] // unused depending on which sockets are enabled
  1168. pub(crate) fn hardware_addr(&self) -> Option<HardwareAddress> {
  1169. self.hardware_addr
  1170. }
  1171. #[allow(unused)] // unused depending on which sockets are enabled
  1172. pub(crate) fn checksum_caps(&self) -> ChecksumCapabilities {
  1173. self.caps.checksum.clone()
  1174. }
  1175. #[allow(unused)] // unused depending on which sockets are enabled
  1176. pub(crate) fn ip_mtu(&self) -> usize {
  1177. self.caps.ip_mtu()
  1178. }
  1179. #[allow(unused)] // unused depending on which sockets are enabled, and in tests
  1180. pub(crate) fn rand(&mut self) -> &mut Rand {
  1181. &mut self.rand
  1182. }
  1183. #[allow(unused)] // unused depending on which sockets are enabled
  1184. pub(crate) fn get_source_address(&mut self, dst_addr: IpAddress) -> Option<IpAddress> {
  1185. let v = dst_addr.version();
  1186. for cidr in self.ip_addrs.iter() {
  1187. let addr = cidr.address();
  1188. if addr.version() == v {
  1189. return Some(addr);
  1190. }
  1191. }
  1192. None
  1193. }
  1194. #[cfg(feature = "proto-ipv4")]
  1195. #[allow(unused)]
  1196. pub(crate) fn get_source_address_ipv4(
  1197. &mut self,
  1198. _dst_addr: Ipv4Address,
  1199. ) -> Option<Ipv4Address> {
  1200. for cidr in self.ip_addrs.iter() {
  1201. #[allow(irrefutable_let_patterns)] // if only ipv4 is enabled
  1202. if let IpCidr::Ipv4(cidr) = cidr {
  1203. return Some(cidr.address());
  1204. }
  1205. }
  1206. None
  1207. }
  1208. #[cfg(feature = "proto-ipv6")]
  1209. #[allow(unused)]
  1210. pub(crate) fn get_source_address_ipv6(
  1211. &mut self,
  1212. _dst_addr: Ipv6Address,
  1213. ) -> Option<Ipv6Address> {
  1214. for cidr in self.ip_addrs.iter() {
  1215. #[allow(irrefutable_let_patterns)] // if only ipv6 is enabled
  1216. if let IpCidr::Ipv6(cidr) = cidr {
  1217. return Some(cidr.address());
  1218. }
  1219. }
  1220. None
  1221. }
  1222. #[cfg(test)]
  1223. pub(crate) fn mock() -> Self {
  1224. Self {
  1225. caps: DeviceCapabilities {
  1226. #[cfg(feature = "medium-ethernet")]
  1227. medium: crate::phy::Medium::Ethernet,
  1228. #[cfg(not(feature = "medium-ethernet"))]
  1229. medium: crate::phy::Medium::Ip,
  1230. checksum: crate::phy::ChecksumCapabilities {
  1231. #[cfg(feature = "proto-ipv4")]
  1232. icmpv4: crate::phy::Checksum::Both,
  1233. #[cfg(feature = "proto-ipv6")]
  1234. icmpv6: crate::phy::Checksum::Both,
  1235. ipv4: crate::phy::Checksum::Both,
  1236. tcp: crate::phy::Checksum::Both,
  1237. udp: crate::phy::Checksum::Both,
  1238. },
  1239. max_burst_size: None,
  1240. #[cfg(feature = "medium-ethernet")]
  1241. max_transmission_unit: 1514,
  1242. #[cfg(not(feature = "medium-ethernet"))]
  1243. max_transmission_unit: 1500,
  1244. },
  1245. now: Instant::from_millis_const(0),
  1246. ip_addrs: ManagedSlice::Owned(vec![
  1247. #[cfg(feature = "proto-ipv4")]
  1248. IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address::new(192, 168, 1, 1), 24)),
  1249. #[cfg(feature = "proto-ipv6")]
  1250. IpCidr::Ipv6(Ipv6Cidr::new(
  1251. Ipv6Address([0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),
  1252. 64,
  1253. )),
  1254. ]),
  1255. rand: Rand::new(1234),
  1256. routes: Routes::new(&mut [][..]),
  1257. #[cfg(feature = "proto-ipv4")]
  1258. any_ip: false,
  1259. #[cfg(feature = "medium-ieee802154")]
  1260. pan_id: Some(crate::wire::Ieee802154Pan(0xabcd)),
  1261. #[cfg(feature = "medium-ieee802154")]
  1262. sequence_no: 1,
  1263. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1264. tag: 1,
  1265. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1266. hardware_addr: Some(crate::wire::HardwareAddress::Ethernet(
  1267. crate::wire::EthernetAddress([0x02, 0x02, 0x02, 0x02, 0x02, 0x02]),
  1268. )),
  1269. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1270. neighbor_cache: None,
  1271. #[cfg(feature = "proto-igmp")]
  1272. igmp_report_state: IgmpReportState::Inactive,
  1273. #[cfg(feature = "proto-igmp")]
  1274. ipv4_multicast_groups: ManagedMap::Borrowed(&mut []),
  1275. }
  1276. }
  1277. #[cfg(test)]
  1278. #[allow(unused)] // unused depending on which sockets are enabled
  1279. pub(crate) fn set_now(&mut self, now: Instant) {
  1280. self.now = now
  1281. }
  1282. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  1283. fn check_hardware_addr(addr: &HardwareAddress) {
  1284. if !addr.is_unicast() {
  1285. panic!("Ethernet address {} is not unicast", addr)
  1286. }
  1287. }
  1288. fn check_ip_addrs(addrs: &[IpCidr]) {
  1289. for cidr in addrs {
  1290. if !cidr.address().is_unicast() && !cidr.address().is_unspecified() {
  1291. panic!("IP address {} is not unicast", cidr.address())
  1292. }
  1293. }
  1294. }
  1295. #[cfg(feature = "medium-ieee802154")]
  1296. fn get_sequence_number(&mut self) -> u8 {
  1297. let no = self.sequence_no;
  1298. self.sequence_no = self.sequence_no.wrapping_add(1);
  1299. no
  1300. }
  1301. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1302. fn get_sixlowpan_fragment_tag(&mut self) -> u16 {
  1303. let tag = self.tag;
  1304. self.tag = self.tag.wrapping_add(1);
  1305. tag
  1306. }
  1307. /// Determine if the given `Ipv6Address` is the solicited node
  1308. /// multicast address for a IPv6 addresses assigned to the interface.
  1309. /// See [RFC 4291 § 2.7.1] for more details.
  1310. ///
  1311. /// [RFC 4291 § 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
  1312. #[cfg(feature = "proto-ipv6")]
  1313. pub fn has_solicited_node(&self, addr: Ipv6Address) -> bool {
  1314. self.ip_addrs.iter().any(|cidr| {
  1315. match *cidr {
  1316. IpCidr::Ipv6(cidr) if cidr.address() != Ipv6Address::LOOPBACK => {
  1317. // Take the lower order 24 bits of the IPv6 address and
  1318. // append those bits to FF02:0:0:0:0:1:FF00::/104.
  1319. addr.as_bytes()[14..] == cidr.address().as_bytes()[14..]
  1320. }
  1321. _ => false,
  1322. }
  1323. })
  1324. }
  1325. /// Check whether the interface has the given IP address assigned.
  1326. fn has_ip_addr<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1327. let addr = addr.into();
  1328. self.ip_addrs.iter().any(|probe| probe.address() == addr)
  1329. }
  1330. /// Get the first IPv4 address of the interface.
  1331. #[cfg(feature = "proto-ipv4")]
  1332. pub fn ipv4_address(&self) -> Option<Ipv4Address> {
  1333. self.ip_addrs.iter().find_map(|addr| match *addr {
  1334. IpCidr::Ipv4(cidr) => Some(cidr.address()),
  1335. #[cfg(feature = "proto-ipv6")]
  1336. IpCidr::Ipv6(_) => None,
  1337. })
  1338. }
  1339. /// Check whether the interface listens to given destination multicast IP address.
  1340. ///
  1341. /// If built without feature `proto-igmp` this function will
  1342. /// always return `false`.
  1343. pub fn has_multicast_group<T: Into<IpAddress>>(&self, addr: T) -> bool {
  1344. match addr.into() {
  1345. #[cfg(feature = "proto-igmp")]
  1346. IpAddress::Ipv4(key) => {
  1347. key == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1348. || self.ipv4_multicast_groups.get(&key).is_some()
  1349. }
  1350. #[allow(unreachable_patterns)]
  1351. _ => false,
  1352. }
  1353. }
  1354. #[cfg(feature = "medium-ethernet")]
  1355. fn process_ethernet<'frame, T: AsRef<[u8]>>(
  1356. &mut self,
  1357. sockets: &mut SocketSet,
  1358. frame: &'frame T,
  1359. _fragments: &'frame mut FragmentsBuffer<'a>,
  1360. ) -> Option<EthernetPacket<'frame>> {
  1361. let eth_frame = check!(EthernetFrame::new_checked(frame));
  1362. // Ignore any packets not directed to our hardware address or any of the multicast groups.
  1363. if !eth_frame.dst_addr().is_broadcast()
  1364. && !eth_frame.dst_addr().is_multicast()
  1365. && HardwareAddress::Ethernet(eth_frame.dst_addr()) != self.hardware_addr.unwrap()
  1366. {
  1367. return None;
  1368. }
  1369. match eth_frame.ethertype() {
  1370. #[cfg(feature = "proto-ipv4")]
  1371. EthernetProtocol::Arp => self.process_arp(self.now, &eth_frame),
  1372. #[cfg(feature = "proto-ipv4")]
  1373. EthernetProtocol::Ipv4 => {
  1374. let ipv4_packet = check!(Ipv4Packet::new_checked(eth_frame.payload()));
  1375. cfg_if::cfg_if! {
  1376. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1377. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1378. .map(EthernetPacket::Ip) } else {
  1379. self.process_ipv4(sockets, &ipv4_packet, None).map(EthernetPacket::Ip)
  1380. }
  1381. }
  1382. }
  1383. #[cfg(feature = "proto-ipv6")]
  1384. EthernetProtocol::Ipv6 => {
  1385. let ipv6_packet = check!(Ipv6Packet::new_checked(eth_frame.payload()));
  1386. self.process_ipv6(sockets, &ipv6_packet)
  1387. .map(EthernetPacket::Ip)
  1388. }
  1389. // Drop all other traffic.
  1390. _ => None,
  1391. }
  1392. }
  1393. #[cfg(feature = "medium-ip")]
  1394. fn process_ip<'frame, T: AsRef<[u8]>>(
  1395. &mut self,
  1396. sockets: &mut SocketSet,
  1397. ip_payload: &'frame T,
  1398. _fragments: &'frame mut FragmentsBuffer<'a>,
  1399. ) -> Option<IpPacket<'frame>> {
  1400. match IpVersion::of_packet(ip_payload.as_ref()) {
  1401. #[cfg(feature = "proto-ipv4")]
  1402. Ok(IpVersion::Ipv4) => {
  1403. let ipv4_packet = check!(Ipv4Packet::new_checked(ip_payload));
  1404. cfg_if::cfg_if! {
  1405. if #[cfg(feature = "proto-ipv4-fragmentation")] {
  1406. self.process_ipv4(sockets, &ipv4_packet, Some(&mut _fragments.ipv4_fragments))
  1407. } else {
  1408. self.process_ipv4(sockets, &ipv4_packet, None)
  1409. }
  1410. }
  1411. }
  1412. #[cfg(feature = "proto-ipv6")]
  1413. Ok(IpVersion::Ipv6) => {
  1414. let ipv6_packet = check!(Ipv6Packet::new_checked(ip_payload));
  1415. self.process_ipv6(sockets, &ipv6_packet)
  1416. }
  1417. // Drop all other traffic.
  1418. _ => None,
  1419. }
  1420. }
  1421. #[cfg(feature = "medium-ieee802154")]
  1422. fn process_ieee802154<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1423. &mut self,
  1424. sockets: &mut SocketSet,
  1425. sixlowpan_payload: &'payload T,
  1426. _fragments: &'output mut FragmentsBuffer<'a>,
  1427. ) -> Option<IpPacket<'output>> {
  1428. let ieee802154_frame = check!(Ieee802154Frame::new_checked(sixlowpan_payload));
  1429. let ieee802154_repr = check!(Ieee802154Repr::parse(&ieee802154_frame));
  1430. if ieee802154_repr.frame_type != Ieee802154FrameType::Data {
  1431. return None;
  1432. }
  1433. // Drop frames when the user has set a PAN id and the PAN id from frame is not equal to this
  1434. // When the user didn't set a PAN id (so it is None), then we accept all PAN id's.
  1435. // We always accept the broadcast PAN id.
  1436. if self.pan_id.is_some()
  1437. && ieee802154_repr.dst_pan_id != self.pan_id
  1438. && ieee802154_repr.dst_pan_id != Some(Ieee802154Pan::BROADCAST)
  1439. {
  1440. net_debug!(
  1441. "IEEE802.15.4: dropping {:?} because not our PAN id (or not broadcast)",
  1442. ieee802154_repr
  1443. );
  1444. return None;
  1445. }
  1446. match ieee802154_frame.payload() {
  1447. Some(payload) => {
  1448. cfg_if::cfg_if! {
  1449. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  1450. self.process_sixlowpan(sockets, &ieee802154_repr, payload, Some((&mut _fragments.sixlowpan_fragments, _fragments.sixlowpan_fragments_cache_timeout)))
  1451. } else {
  1452. self.process_sixlowpan(sockets, &ieee802154_repr, payload, None)
  1453. }
  1454. }
  1455. }
  1456. None => None,
  1457. }
  1458. }
  1459. #[cfg(feature = "proto-sixlowpan")]
  1460. fn process_sixlowpan<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1461. &mut self,
  1462. sockets: &mut SocketSet,
  1463. ieee802154_repr: &Ieee802154Repr,
  1464. payload: &'payload T,
  1465. _fragments: Option<(
  1466. &'output mut PacketAssemblerSet<'a, SixlowpanFragKey>,
  1467. Duration,
  1468. )>,
  1469. ) -> Option<IpPacket<'output>> {
  1470. let payload = match check!(SixlowpanPacket::dispatch(payload)) {
  1471. #[cfg(not(feature = "proto-sixlowpan-fragmentation"))]
  1472. SixlowpanPacket::FragmentHeader => {
  1473. net_debug!("Fragmentation is not supported, use the `proto-sixlowpan-fragmentation` feature to add support.");
  1474. return None;
  1475. }
  1476. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  1477. SixlowpanPacket::FragmentHeader => {
  1478. let (fragments, timeout) = _fragments.unwrap();
  1479. // We have a fragment header, which means we cannot process the 6LoWPAN packet,
  1480. // unless we have a complete one after processing this fragment.
  1481. let frag = check!(SixlowpanFragPacket::new_checked(payload));
  1482. // The key specifies to which 6LoWPAN fragment it belongs too.
  1483. // It is based on the link layer addresses, the tag and the size.
  1484. let key = frag.get_key(ieee802154_repr);
  1485. // The offset of this fragment in increments of 8 octets.
  1486. let offset = frag.datagram_offset() as usize * 8;
  1487. if frag.is_first_fragment() {
  1488. // The first fragment contains the total size of the IPv6 packet.
  1489. // However, we received a packet that is compressed following the 6LoWPAN
  1490. // standard. This means we need to convert the IPv6 packet size to a 6LoWPAN
  1491. // packet size. The packet size can be different because of first the
  1492. // compression of the IP header and when UDP is used (because the UDP header
  1493. // can also be compressed). Other headers are not compressed by 6LoWPAN.
  1494. let iphc = check!(SixlowpanIphcPacket::new_checked(frag.payload()));
  1495. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1496. &iphc,
  1497. ieee802154_repr.src_addr,
  1498. ieee802154_repr.dst_addr,
  1499. ));
  1500. // The uncompressed header size always starts with 40, since this is the size
  1501. // of a IPv6 header.
  1502. let mut uncompressed_header_size = 40;
  1503. let mut compressed_header_size = iphc.header_len();
  1504. // We need to check if we have an UDP packet, since this header can also be
  1505. // compressed by 6LoWPAN. We currently don't support extension headers yet.
  1506. match iphc_repr.next_header {
  1507. SixlowpanNextHeader::Compressed => {
  1508. match check!(SixlowpanNhcPacket::dispatch(iphc.payload())) {
  1509. SixlowpanNhcPacket::ExtHeader => {
  1510. net_debug!("6LoWPAN: extension headers not supported");
  1511. return None;
  1512. }
  1513. SixlowpanNhcPacket::UdpHeader => {
  1514. let udp_packet =
  1515. check!(SixlowpanUdpNhcPacket::new_checked(iphc.payload()));
  1516. uncompressed_header_size += 8;
  1517. compressed_header_size +=
  1518. 1 + udp_packet.ports_size() + udp_packet.checksum_size();
  1519. }
  1520. }
  1521. }
  1522. SixlowpanNextHeader::Uncompressed(_) => (),
  1523. }
  1524. // We reserve a spot in the packet assembler set and add the required
  1525. // information to the packet assembler.
  1526. // This information is the total size of the packet when it is fully assmbled.
  1527. // We also pass the header size, since this is needed when other fragments
  1528. // (other than the first one) are added.
  1529. let frag_slot = match fragments.reserve_with_key(&key) {
  1530. Ok(frag) => frag,
  1531. Err(Error::PacketAssemblerSetFull) => {
  1532. net_debug!("No available packet assembler for fragmented packet");
  1533. return Default::default();
  1534. }
  1535. e => check!(e),
  1536. };
  1537. check!(frag_slot.start(
  1538. Some(
  1539. frag.datagram_size() as usize - uncompressed_header_size
  1540. + compressed_header_size
  1541. ),
  1542. self.now + timeout,
  1543. -((uncompressed_header_size - compressed_header_size) as isize),
  1544. ));
  1545. }
  1546. let frags = check!(fragments.get_packet_assembler_mut(&key));
  1547. net_trace!("6LoWPAN: received packet fragment");
  1548. // Add the fragment to the packet assembler.
  1549. match frags.add(frag.payload(), offset) {
  1550. Ok(true) => {
  1551. net_trace!("6LoWPAN: fragmented packet now complete");
  1552. check!(fragments.get_assembled_packet(&key))
  1553. }
  1554. Ok(false) => {
  1555. return None;
  1556. }
  1557. Err(Error::PacketAssemblerOverlap) => {
  1558. net_trace!("6LoWPAN: overlap in packet");
  1559. frags.mark_discarded();
  1560. return None;
  1561. }
  1562. Err(_) => return None,
  1563. }
  1564. }
  1565. SixlowpanPacket::IphcHeader => payload.as_ref(),
  1566. };
  1567. // At this point we should have a valid 6LoWPAN packet.
  1568. // The first header needs to be an IPHC header.
  1569. let iphc_packet = check!(SixlowpanIphcPacket::new_checked(payload));
  1570. let iphc_repr = check!(SixlowpanIphcRepr::parse(
  1571. &iphc_packet,
  1572. ieee802154_repr.src_addr,
  1573. ieee802154_repr.dst_addr,
  1574. ));
  1575. let payload = iphc_packet.payload();
  1576. let mut ipv6_repr = Ipv6Repr {
  1577. src_addr: iphc_repr.src_addr,
  1578. dst_addr: iphc_repr.dst_addr,
  1579. hop_limit: iphc_repr.hop_limit,
  1580. next_header: IpProtocol::Unknown(0),
  1581. payload_len: 40,
  1582. };
  1583. match iphc_repr.next_header {
  1584. SixlowpanNextHeader::Compressed => {
  1585. match check!(SixlowpanNhcPacket::dispatch(payload)) {
  1586. SixlowpanNhcPacket::ExtHeader => {
  1587. net_debug!("Extension headers are currently not supported for 6LoWPAN");
  1588. None
  1589. }
  1590. #[cfg(not(feature = "socket-udp"))]
  1591. SixlowpanNhcPacket::UdpHeader => {
  1592. net_debug!("UDP support is disabled, enable cargo feature `socket-udp`.");
  1593. None
  1594. }
  1595. #[cfg(feature = "socket-udp")]
  1596. SixlowpanNhcPacket::UdpHeader => {
  1597. let udp_packet = check!(SixlowpanUdpNhcPacket::new_checked(payload));
  1598. ipv6_repr.next_header = IpProtocol::Udp;
  1599. ipv6_repr.payload_len += 8 + udp_packet.payload().len();
  1600. let udp_repr = check!(SixlowpanUdpNhcRepr::parse(
  1601. &udp_packet,
  1602. &iphc_repr.src_addr,
  1603. &iphc_repr.dst_addr,
  1604. ));
  1605. // Look for UDP sockets that will accept the UDP packet.
  1606. // If it does not accept the packet, then send an ICMP message.
  1607. //
  1608. // NOTE(thvdveld): this is currently the same code as in self.process_udp.
  1609. // However, we cannot use that one because the payload passed to it is a
  1610. // normal IPv6 UDP payload, which is not what we have here.
  1611. for udp_socket in sockets
  1612. .items_mut()
  1613. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  1614. {
  1615. if udp_socket.accepts(self, &IpRepr::Ipv6(ipv6_repr), &udp_repr) {
  1616. udp_socket.process(
  1617. self,
  1618. &IpRepr::Ipv6(ipv6_repr),
  1619. &udp_repr,
  1620. udp_packet.payload(),
  1621. );
  1622. return None;
  1623. }
  1624. }
  1625. // When we are here then then there was no UDP socket that accepted the UDP
  1626. // message.
  1627. let payload_len = icmp_reply_payload_len(
  1628. payload.len(),
  1629. IPV6_MIN_MTU,
  1630. ipv6_repr.buffer_len(),
  1631. );
  1632. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  1633. reason: Icmpv6DstUnreachable::PortUnreachable,
  1634. header: ipv6_repr,
  1635. data: &payload[0..payload_len],
  1636. };
  1637. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  1638. }
  1639. }
  1640. }
  1641. SixlowpanNextHeader::Uncompressed(nxt_hdr) => match nxt_hdr {
  1642. IpProtocol::Icmpv6 => {
  1643. ipv6_repr.next_header = IpProtocol::Icmpv6;
  1644. self.process_icmpv6(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1645. }
  1646. #[cfg(feature = "socket-tcp")]
  1647. IpProtocol::Tcp => {
  1648. ipv6_repr.next_header = nxt_hdr;
  1649. ipv6_repr.payload_len += payload.len();
  1650. self.process_tcp(sockets, IpRepr::Ipv6(ipv6_repr), iphc_packet.payload())
  1651. }
  1652. proto => {
  1653. net_debug!("6LoWPAN: {} currently not supported", proto);
  1654. None
  1655. }
  1656. },
  1657. }
  1658. }
  1659. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  1660. fn process_arp<'frame, T: AsRef<[u8]>>(
  1661. &mut self,
  1662. timestamp: Instant,
  1663. eth_frame: &EthernetFrame<&'frame T>,
  1664. ) -> Option<EthernetPacket<'frame>> {
  1665. let arp_packet = check!(ArpPacket::new_checked(eth_frame.payload()));
  1666. let arp_repr = check!(ArpRepr::parse(&arp_packet));
  1667. match arp_repr {
  1668. ArpRepr::EthernetIpv4 {
  1669. operation,
  1670. source_hardware_addr,
  1671. source_protocol_addr,
  1672. target_protocol_addr,
  1673. ..
  1674. } => {
  1675. // Only process ARP packets for us.
  1676. if !self.has_ip_addr(target_protocol_addr) {
  1677. return None;
  1678. }
  1679. // Only process REQUEST and RESPONSE.
  1680. if let ArpOperation::Unknown(_) = operation {
  1681. net_debug!("arp: unknown operation code");
  1682. return None;
  1683. }
  1684. // Discard packets with non-unicast source addresses.
  1685. if !source_protocol_addr.is_unicast() || !source_hardware_addr.is_unicast() {
  1686. net_debug!("arp: non-unicast source address");
  1687. return None;
  1688. }
  1689. if !self.in_same_network(&IpAddress::Ipv4(source_protocol_addr)) {
  1690. net_debug!("arp: source IP address not in same network as us");
  1691. return None;
  1692. }
  1693. // Fill the ARP cache from any ARP packet aimed at us (both request or response).
  1694. // We fill from requests too because if someone is requesting our address they
  1695. // are probably going to talk to us, so we avoid having to request their address
  1696. // when we later reply to them.
  1697. self.neighbor_cache.as_mut().unwrap().fill(
  1698. source_protocol_addr.into(),
  1699. source_hardware_addr.into(),
  1700. timestamp,
  1701. );
  1702. if operation == ArpOperation::Request {
  1703. let src_hardware_addr = match self.hardware_addr {
  1704. Some(HardwareAddress::Ethernet(addr)) => addr,
  1705. _ => unreachable!(),
  1706. };
  1707. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  1708. operation: ArpOperation::Reply,
  1709. source_hardware_addr: src_hardware_addr,
  1710. source_protocol_addr: target_protocol_addr,
  1711. target_hardware_addr: source_hardware_addr,
  1712. target_protocol_addr: source_protocol_addr,
  1713. }))
  1714. } else {
  1715. None
  1716. }
  1717. }
  1718. }
  1719. }
  1720. #[cfg(feature = "socket-raw")]
  1721. fn raw_socket_filter<'frame>(
  1722. &mut self,
  1723. sockets: &mut SocketSet,
  1724. ip_repr: &IpRepr,
  1725. ip_payload: &'frame [u8],
  1726. ) -> bool {
  1727. let mut handled_by_raw_socket = false;
  1728. // Pass every IP packet to all raw sockets we have registered.
  1729. for raw_socket in sockets
  1730. .items_mut()
  1731. .filter_map(|i| raw::Socket::downcast_mut(&mut i.socket))
  1732. {
  1733. if raw_socket.accepts(ip_repr) {
  1734. raw_socket.process(self, ip_repr, ip_payload);
  1735. handled_by_raw_socket = true;
  1736. }
  1737. }
  1738. handled_by_raw_socket
  1739. }
  1740. #[cfg(feature = "proto-ipv6")]
  1741. fn process_ipv6<'frame, T: AsRef<[u8]> + ?Sized>(
  1742. &mut self,
  1743. sockets: &mut SocketSet,
  1744. ipv6_packet: &Ipv6Packet<&'frame T>,
  1745. ) -> Option<IpPacket<'frame>> {
  1746. let ipv6_repr = check!(Ipv6Repr::parse(ipv6_packet));
  1747. if !ipv6_repr.src_addr.is_unicast() {
  1748. // Discard packets with non-unicast source addresses.
  1749. net_debug!("non-unicast source address");
  1750. return None;
  1751. }
  1752. let ip_payload = ipv6_packet.payload();
  1753. #[cfg(feature = "socket-raw")]
  1754. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ipv6_repr.into(), ip_payload);
  1755. #[cfg(not(feature = "socket-raw"))]
  1756. let handled_by_raw_socket = false;
  1757. self.process_nxt_hdr(
  1758. sockets,
  1759. ipv6_repr,
  1760. ipv6_repr.next_header,
  1761. handled_by_raw_socket,
  1762. ip_payload,
  1763. )
  1764. }
  1765. /// Given the next header value forward the payload onto the correct process
  1766. /// function.
  1767. #[cfg(feature = "proto-ipv6")]
  1768. fn process_nxt_hdr<'frame>(
  1769. &mut self,
  1770. sockets: &mut SocketSet,
  1771. ipv6_repr: Ipv6Repr,
  1772. nxt_hdr: IpProtocol,
  1773. handled_by_raw_socket: bool,
  1774. ip_payload: &'frame [u8],
  1775. ) -> Option<IpPacket<'frame>> {
  1776. match nxt_hdr {
  1777. IpProtocol::Icmpv6 => self.process_icmpv6(sockets, ipv6_repr.into(), ip_payload),
  1778. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1779. IpProtocol::Udp => {
  1780. self.process_udp(sockets, ipv6_repr.into(), handled_by_raw_socket, ip_payload)
  1781. }
  1782. #[cfg(feature = "socket-tcp")]
  1783. IpProtocol::Tcp => self.process_tcp(sockets, ipv6_repr.into(), ip_payload),
  1784. IpProtocol::HopByHop => {
  1785. self.process_hopbyhop(sockets, ipv6_repr, handled_by_raw_socket, ip_payload)
  1786. }
  1787. #[cfg(feature = "socket-raw")]
  1788. _ if handled_by_raw_socket => None,
  1789. _ => {
  1790. // Send back as much of the original payload as we can.
  1791. let payload_len =
  1792. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  1793. let icmp_reply_repr = Icmpv6Repr::ParamProblem {
  1794. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  1795. // The offending packet is after the IPv6 header.
  1796. pointer: ipv6_repr.buffer_len() as u32,
  1797. header: ipv6_repr,
  1798. data: &ip_payload[0..payload_len],
  1799. };
  1800. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  1801. }
  1802. }
  1803. }
  1804. #[cfg(feature = "proto-ipv4")]
  1805. fn process_ipv4<'output, 'payload: 'output, T: AsRef<[u8]> + ?Sized>(
  1806. &mut self,
  1807. sockets: &mut SocketSet,
  1808. ipv4_packet: &Ipv4Packet<&'payload T>,
  1809. _fragments: Option<&'output mut PacketAssemblerSet<'a, Ipv4FragKey>>,
  1810. ) -> Option<IpPacket<'output>> {
  1811. let ipv4_repr = check!(Ipv4Repr::parse(ipv4_packet, &self.caps.checksum));
  1812. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  1813. // Discard packets with non-unicast source addresses.
  1814. net_debug!("non-unicast source address");
  1815. return None;
  1816. }
  1817. #[cfg(feature = "proto-ipv4-fragmentation")]
  1818. let ip_payload = {
  1819. const REASSEMBLY_TIMEOUT: u64 = 90;
  1820. let fragments = _fragments.unwrap();
  1821. if ipv4_packet.more_frags() || ipv4_packet.frag_offset() != 0 {
  1822. let key = ipv4_packet.get_key();
  1823. let f = match fragments.get_packet_assembler_mut(&key) {
  1824. Ok(f) => f,
  1825. Err(_) => {
  1826. check!(check!(fragments.reserve_with_key(&key)).start(
  1827. None,
  1828. self.now + Duration::from_secs(REASSEMBLY_TIMEOUT),
  1829. 0,
  1830. ));
  1831. check!(fragments.get_packet_assembler_mut(&key))
  1832. }
  1833. };
  1834. if !ipv4_packet.more_frags() {
  1835. // This is the last fragment, so we know the total size
  1836. check!(f.set_total_size(
  1837. ipv4_packet.total_len() as usize - ipv4_packet.header_len() as usize
  1838. + ipv4_packet.frag_offset() as usize,
  1839. ));
  1840. }
  1841. match f.add(ipv4_packet.payload(), ipv4_packet.frag_offset() as usize) {
  1842. Ok(true) => {
  1843. // NOTE: according to the standard, the total length needs to be
  1844. // recomputed, as well as the checksum. However, we don't really use
  1845. // the IPv4 header after the packet is reassembled.
  1846. check!(fragments.get_assembled_packet(&key))
  1847. }
  1848. Ok(false) => {
  1849. return None;
  1850. }
  1851. Err(Error::PacketAssemblerOverlap) => {
  1852. return None;
  1853. }
  1854. Err(e) => {
  1855. net_debug!("fragmentation error: {}", e);
  1856. return None;
  1857. }
  1858. }
  1859. } else {
  1860. ipv4_packet.payload()
  1861. }
  1862. };
  1863. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  1864. let ip_payload = ipv4_packet.payload();
  1865. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  1866. #[cfg(feature = "socket-raw")]
  1867. let handled_by_raw_socket = self.raw_socket_filter(sockets, &ip_repr, ip_payload);
  1868. #[cfg(not(feature = "socket-raw"))]
  1869. let handled_by_raw_socket = false;
  1870. #[cfg(feature = "socket-dhcpv4")]
  1871. {
  1872. if ipv4_repr.next_header == IpProtocol::Udp && self.hardware_addr.is_some() {
  1873. // First check for source and dest ports, then do `UdpRepr::parse` if they match.
  1874. // This way we avoid validating the UDP checksum twice for all non-DHCP UDP packets (one here, one in `process_udp`)
  1875. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  1876. if udp_packet.src_port() == DHCP_SERVER_PORT
  1877. && udp_packet.dst_port() == DHCP_CLIENT_PORT
  1878. {
  1879. if let Some(dhcp_socket) = sockets
  1880. .items_mut()
  1881. .find_map(|i| dhcpv4::Socket::downcast_mut(&mut i.socket))
  1882. {
  1883. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  1884. let udp_repr = check!(UdpRepr::parse(
  1885. &udp_packet,
  1886. &src_addr,
  1887. &dst_addr,
  1888. &self.caps.checksum
  1889. ));
  1890. let udp_payload = udp_packet.payload();
  1891. dhcp_socket.process(self, &ipv4_repr, &udp_repr, udp_payload);
  1892. return None;
  1893. }
  1894. }
  1895. }
  1896. }
  1897. if !self.has_ip_addr(ipv4_repr.dst_addr)
  1898. && !self.has_multicast_group(ipv4_repr.dst_addr)
  1899. && !self.is_broadcast_v4(ipv4_repr.dst_addr)
  1900. {
  1901. // Ignore IP packets not directed at us, or broadcast, or any of the multicast groups.
  1902. // If AnyIP is enabled, also check if the packet is routed locally.
  1903. if !self.any_ip
  1904. || !ipv4_repr.dst_addr.is_unicast()
  1905. || self
  1906. .routes
  1907. .lookup(&IpAddress::Ipv4(ipv4_repr.dst_addr), self.now)
  1908. .map_or(true, |router_addr| !self.has_ip_addr(router_addr))
  1909. {
  1910. return None;
  1911. }
  1912. }
  1913. match ipv4_repr.next_header {
  1914. IpProtocol::Icmp => self.process_icmpv4(sockets, ip_repr, ip_payload),
  1915. #[cfg(feature = "proto-igmp")]
  1916. IpProtocol::Igmp => self.process_igmp(ipv4_repr, ip_payload),
  1917. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  1918. IpProtocol::Udp => {
  1919. self.process_udp(sockets, ip_repr, handled_by_raw_socket, ip_payload)
  1920. }
  1921. #[cfg(feature = "socket-tcp")]
  1922. IpProtocol::Tcp => self.process_tcp(sockets, ip_repr, ip_payload),
  1923. _ if handled_by_raw_socket => None,
  1924. _ => {
  1925. // Send back as much of the original payload as we can.
  1926. let payload_len =
  1927. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  1928. let icmp_reply_repr = Icmpv4Repr::DstUnreachable {
  1929. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  1930. header: ipv4_repr,
  1931. data: &ip_payload[0..payload_len],
  1932. };
  1933. self.icmpv4_reply(ipv4_repr, icmp_reply_repr)
  1934. }
  1935. }
  1936. }
  1937. /// Checks if an incoming packet has a broadcast address for the interfaces
  1938. /// associated ipv4 addresses.
  1939. #[cfg(feature = "proto-ipv4")]
  1940. fn is_subnet_broadcast(&self, address: Ipv4Address) -> bool {
  1941. self.ip_addrs
  1942. .iter()
  1943. .filter_map(|own_cidr| match own_cidr {
  1944. IpCidr::Ipv4(own_ip) => Some(own_ip.broadcast()?),
  1945. #[cfg(feature = "proto-ipv6")]
  1946. IpCidr::Ipv6(_) => None,
  1947. })
  1948. .any(|broadcast_address| address == broadcast_address)
  1949. }
  1950. /// Checks if an ipv4 address is broadcast, taking into account subnet broadcast addresses
  1951. #[cfg(feature = "proto-ipv4")]
  1952. fn is_broadcast_v4(&self, address: Ipv4Address) -> bool {
  1953. address.is_broadcast() || self.is_subnet_broadcast(address)
  1954. }
  1955. /// Checks if an ipv4 address is unicast, taking into account subnet broadcast addresses
  1956. #[cfg(feature = "proto-ipv4")]
  1957. fn is_unicast_v4(&self, address: Ipv4Address) -> bool {
  1958. address.is_unicast() && !self.is_subnet_broadcast(address)
  1959. }
  1960. /// Host duties of the **IGMPv2** protocol.
  1961. ///
  1962. /// Sets up `igmp_report_state` for responding to IGMP general/specific membership queries.
  1963. /// Membership must not be reported immediately in order to avoid flooding the network
  1964. /// after a query is broadcasted by a router; this is not currently done.
  1965. #[cfg(feature = "proto-igmp")]
  1966. fn process_igmp<'frame>(
  1967. &mut self,
  1968. ipv4_repr: Ipv4Repr,
  1969. ip_payload: &'frame [u8],
  1970. ) -> Option<IpPacket<'frame>> {
  1971. let igmp_packet = check!(IgmpPacket::new_checked(ip_payload));
  1972. let igmp_repr = check!(IgmpRepr::parse(&igmp_packet));
  1973. // FIXME: report membership after a delay
  1974. match igmp_repr {
  1975. IgmpRepr::MembershipQuery {
  1976. group_addr,
  1977. version,
  1978. max_resp_time,
  1979. } => {
  1980. // General query
  1981. if group_addr.is_unspecified()
  1982. && ipv4_repr.dst_addr == Ipv4Address::MULTICAST_ALL_SYSTEMS
  1983. {
  1984. // Are we member in any groups?
  1985. if self.ipv4_multicast_groups.iter().next().is_some() {
  1986. let interval = match version {
  1987. IgmpVersion::Version1 => Duration::from_millis(100),
  1988. IgmpVersion::Version2 => {
  1989. // No dependence on a random generator
  1990. // (see [#24](https://github.com/m-labs/smoltcp/issues/24))
  1991. // but at least spread reports evenly across max_resp_time.
  1992. let intervals = self.ipv4_multicast_groups.len() as u32 + 1;
  1993. max_resp_time / intervals
  1994. }
  1995. };
  1996. self.igmp_report_state = IgmpReportState::ToGeneralQuery {
  1997. version,
  1998. timeout: self.now + interval,
  1999. interval,
  2000. next_index: 0,
  2001. };
  2002. }
  2003. } else {
  2004. // Group-specific query
  2005. if self.has_multicast_group(group_addr) && ipv4_repr.dst_addr == group_addr {
  2006. // Don't respond immediately
  2007. let timeout = max_resp_time / 4;
  2008. self.igmp_report_state = IgmpReportState::ToSpecificQuery {
  2009. version,
  2010. timeout: self.now + timeout,
  2011. group: group_addr,
  2012. };
  2013. }
  2014. }
  2015. }
  2016. // Ignore membership reports
  2017. IgmpRepr::MembershipReport { .. } => (),
  2018. // Ignore hosts leaving groups
  2019. IgmpRepr::LeaveGroup { .. } => (),
  2020. }
  2021. None
  2022. }
  2023. #[cfg(feature = "proto-ipv6")]
  2024. fn process_icmpv6<'frame>(
  2025. &mut self,
  2026. _sockets: &mut SocketSet,
  2027. ip_repr: IpRepr,
  2028. ip_payload: &'frame [u8],
  2029. ) -> Option<IpPacket<'frame>> {
  2030. let icmp_packet = check!(Icmpv6Packet::new_checked(ip_payload));
  2031. let icmp_repr = check!(Icmpv6Repr::parse(
  2032. &ip_repr.src_addr(),
  2033. &ip_repr.dst_addr(),
  2034. &icmp_packet,
  2035. &self.caps.checksum,
  2036. ));
  2037. #[cfg(feature = "socket-icmp")]
  2038. let mut handled_by_icmp_socket = false;
  2039. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv6"))]
  2040. for icmp_socket in _sockets
  2041. .items_mut()
  2042. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2043. {
  2044. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2045. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2046. handled_by_icmp_socket = true;
  2047. }
  2048. }
  2049. match icmp_repr {
  2050. // Respond to echo requests.
  2051. Icmpv6Repr::EchoRequest {
  2052. ident,
  2053. seq_no,
  2054. data,
  2055. } => match ip_repr {
  2056. IpRepr::Ipv6(ipv6_repr) => {
  2057. let icmp_reply_repr = Icmpv6Repr::EchoReply {
  2058. ident,
  2059. seq_no,
  2060. data,
  2061. };
  2062. self.icmpv6_reply(ipv6_repr, icmp_reply_repr)
  2063. }
  2064. #[allow(unreachable_patterns)]
  2065. _ => unreachable!(),
  2066. },
  2067. // Ignore any echo replies.
  2068. Icmpv6Repr::EchoReply { .. } => None,
  2069. // Forward any NDISC packets to the ndisc packet handler
  2070. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2071. Icmpv6Repr::Ndisc(repr) if ip_repr.hop_limit() == 0xff => match ip_repr {
  2072. IpRepr::Ipv6(ipv6_repr) => self.process_ndisc(ipv6_repr, repr),
  2073. #[allow(unreachable_patterns)]
  2074. _ => unreachable!(),
  2075. },
  2076. // Don't report an error if a packet with unknown type
  2077. // has been handled by an ICMP socket
  2078. #[cfg(feature = "socket-icmp")]
  2079. _ if handled_by_icmp_socket => None,
  2080. // FIXME: do something correct here?
  2081. _ => None,
  2082. }
  2083. }
  2084. #[cfg(all(
  2085. any(feature = "medium-ethernet", feature = "medium-ieee802154"),
  2086. feature = "proto-ipv6"
  2087. ))]
  2088. fn process_ndisc<'frame>(
  2089. &mut self,
  2090. ip_repr: Ipv6Repr,
  2091. repr: NdiscRepr<'frame>,
  2092. ) -> Option<IpPacket<'frame>> {
  2093. match repr {
  2094. NdiscRepr::NeighborAdvert {
  2095. lladdr,
  2096. target_addr,
  2097. flags,
  2098. } => {
  2099. let ip_addr = ip_repr.src_addr.into();
  2100. if let Some(lladdr) = lladdr {
  2101. let lladdr = check!(lladdr.parse(self.caps.medium));
  2102. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2103. return None;
  2104. }
  2105. if flags.contains(NdiscNeighborFlags::OVERRIDE)
  2106. || !self
  2107. .neighbor_cache
  2108. .as_mut()
  2109. .unwrap()
  2110. .lookup(&ip_addr, self.now)
  2111. .found()
  2112. {
  2113. self.neighbor_cache
  2114. .as_mut()
  2115. .unwrap()
  2116. .fill(ip_addr, lladdr, self.now)
  2117. }
  2118. }
  2119. None
  2120. }
  2121. NdiscRepr::NeighborSolicit {
  2122. target_addr,
  2123. lladdr,
  2124. ..
  2125. } => {
  2126. if let Some(lladdr) = lladdr {
  2127. let lladdr = check!(lladdr.parse(self.caps.medium));
  2128. if !lladdr.is_unicast() || !target_addr.is_unicast() {
  2129. return None;
  2130. }
  2131. self.neighbor_cache.as_mut().unwrap().fill(
  2132. ip_repr.src_addr.into(),
  2133. lladdr,
  2134. self.now,
  2135. );
  2136. }
  2137. if self.has_solicited_node(ip_repr.dst_addr) && self.has_ip_addr(target_addr) {
  2138. let advert = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  2139. flags: NdiscNeighborFlags::SOLICITED,
  2140. target_addr,
  2141. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2142. lladdr: Some(self.hardware_addr.unwrap().into()),
  2143. });
  2144. let ip_repr = Ipv6Repr {
  2145. src_addr: target_addr,
  2146. dst_addr: ip_repr.src_addr,
  2147. next_header: IpProtocol::Icmpv6,
  2148. hop_limit: 0xff,
  2149. payload_len: advert.buffer_len(),
  2150. };
  2151. Some(IpPacket::Icmpv6((ip_repr, advert)))
  2152. } else {
  2153. None
  2154. }
  2155. }
  2156. _ => None,
  2157. }
  2158. }
  2159. #[cfg(feature = "proto-ipv6")]
  2160. fn process_hopbyhop<'frame>(
  2161. &mut self,
  2162. sockets: &mut SocketSet,
  2163. ipv6_repr: Ipv6Repr,
  2164. handled_by_raw_socket: bool,
  2165. ip_payload: &'frame [u8],
  2166. ) -> Option<IpPacket<'frame>> {
  2167. let hbh_pkt = check!(Ipv6HopByHopHeader::new_checked(ip_payload));
  2168. let hbh_repr = check!(Ipv6HopByHopRepr::parse(&hbh_pkt));
  2169. for opt_repr in hbh_repr.options() {
  2170. let opt_repr = check!(opt_repr);
  2171. match opt_repr {
  2172. Ipv6OptionRepr::Pad1 | Ipv6OptionRepr::PadN(_) => (),
  2173. Ipv6OptionRepr::Unknown { type_, .. } => {
  2174. match Ipv6OptionFailureType::from(type_) {
  2175. Ipv6OptionFailureType::Skip => (),
  2176. Ipv6OptionFailureType::Discard => {
  2177. return None;
  2178. }
  2179. _ => {
  2180. // FIXME(dlrobertson): Send an ICMPv6 parameter problem message
  2181. // here.
  2182. return None;
  2183. }
  2184. }
  2185. }
  2186. }
  2187. }
  2188. self.process_nxt_hdr(
  2189. sockets,
  2190. ipv6_repr,
  2191. hbh_repr.next_header,
  2192. handled_by_raw_socket,
  2193. &ip_payload[hbh_repr.buffer_len()..],
  2194. )
  2195. }
  2196. #[cfg(feature = "proto-ipv4")]
  2197. fn process_icmpv4<'frame>(
  2198. &mut self,
  2199. _sockets: &mut SocketSet,
  2200. ip_repr: IpRepr,
  2201. ip_payload: &'frame [u8],
  2202. ) -> Option<IpPacket<'frame>> {
  2203. let icmp_packet = check!(Icmpv4Packet::new_checked(ip_payload));
  2204. let icmp_repr = check!(Icmpv4Repr::parse(&icmp_packet, &self.caps.checksum));
  2205. #[cfg(feature = "socket-icmp")]
  2206. let mut handled_by_icmp_socket = false;
  2207. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  2208. for icmp_socket in _sockets
  2209. .items_mut()
  2210. .filter_map(|i| icmp::Socket::downcast_mut(&mut i.socket))
  2211. {
  2212. if icmp_socket.accepts(self, &ip_repr, &icmp_repr.into()) {
  2213. icmp_socket.process(self, &ip_repr, &icmp_repr.into());
  2214. handled_by_icmp_socket = true;
  2215. }
  2216. }
  2217. match icmp_repr {
  2218. // Respond to echo requests.
  2219. #[cfg(feature = "proto-ipv4")]
  2220. Icmpv4Repr::EchoRequest {
  2221. ident,
  2222. seq_no,
  2223. data,
  2224. } => {
  2225. let icmp_reply_repr = Icmpv4Repr::EchoReply {
  2226. ident,
  2227. seq_no,
  2228. data,
  2229. };
  2230. match ip_repr {
  2231. IpRepr::Ipv4(ipv4_repr) => self.icmpv4_reply(ipv4_repr, icmp_reply_repr),
  2232. #[allow(unreachable_patterns)]
  2233. _ => unreachable!(),
  2234. }
  2235. }
  2236. // Ignore any echo replies.
  2237. Icmpv4Repr::EchoReply { .. } => None,
  2238. // Don't report an error if a packet with unknown type
  2239. // has been handled by an ICMP socket
  2240. #[cfg(feature = "socket-icmp")]
  2241. _ if handled_by_icmp_socket => None,
  2242. // FIXME: do something correct here?
  2243. _ => None,
  2244. }
  2245. }
  2246. #[cfg(feature = "proto-ipv4")]
  2247. fn icmpv4_reply<'frame, 'icmp: 'frame>(
  2248. &self,
  2249. ipv4_repr: Ipv4Repr,
  2250. icmp_repr: Icmpv4Repr<'icmp>,
  2251. ) -> Option<IpPacket<'frame>> {
  2252. if !self.is_unicast_v4(ipv4_repr.src_addr) {
  2253. // Do not send ICMP replies to non-unicast sources
  2254. None
  2255. } else if self.is_unicast_v4(ipv4_repr.dst_addr) {
  2256. // Reply as normal when src_addr and dst_addr are both unicast
  2257. let ipv4_reply_repr = Ipv4Repr {
  2258. src_addr: ipv4_repr.dst_addr,
  2259. dst_addr: ipv4_repr.src_addr,
  2260. next_header: IpProtocol::Icmp,
  2261. payload_len: icmp_repr.buffer_len(),
  2262. hop_limit: 64,
  2263. };
  2264. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2265. } else if self.is_broadcast_v4(ipv4_repr.dst_addr) {
  2266. // Only reply to broadcasts for echo replies and not other ICMP messages
  2267. match icmp_repr {
  2268. Icmpv4Repr::EchoReply { .. } => match self.ipv4_address() {
  2269. Some(src_addr) => {
  2270. let ipv4_reply_repr = Ipv4Repr {
  2271. src_addr,
  2272. dst_addr: ipv4_repr.src_addr,
  2273. next_header: IpProtocol::Icmp,
  2274. payload_len: icmp_repr.buffer_len(),
  2275. hop_limit: 64,
  2276. };
  2277. Some(IpPacket::Icmpv4((ipv4_reply_repr, icmp_repr)))
  2278. }
  2279. None => None,
  2280. },
  2281. _ => None,
  2282. }
  2283. } else {
  2284. None
  2285. }
  2286. }
  2287. #[cfg(feature = "proto-ipv6")]
  2288. fn icmpv6_reply<'frame, 'icmp: 'frame>(
  2289. &self,
  2290. ipv6_repr: Ipv6Repr,
  2291. icmp_repr: Icmpv6Repr<'icmp>,
  2292. ) -> Option<IpPacket<'frame>> {
  2293. if ipv6_repr.dst_addr.is_unicast() {
  2294. let ipv6_reply_repr = Ipv6Repr {
  2295. src_addr: ipv6_repr.dst_addr,
  2296. dst_addr: ipv6_repr.src_addr,
  2297. next_header: IpProtocol::Icmpv6,
  2298. payload_len: icmp_repr.buffer_len(),
  2299. hop_limit: 64,
  2300. };
  2301. Some(IpPacket::Icmpv6((ipv6_reply_repr, icmp_repr)))
  2302. } else {
  2303. // Do not send any ICMP replies to a broadcast destination address.
  2304. None
  2305. }
  2306. }
  2307. #[cfg(any(feature = "socket-udp", feature = "socket-dns"))]
  2308. fn process_udp<'frame>(
  2309. &mut self,
  2310. sockets: &mut SocketSet,
  2311. ip_repr: IpRepr,
  2312. handled_by_raw_socket: bool,
  2313. ip_payload: &'frame [u8],
  2314. ) -> Option<IpPacket<'frame>> {
  2315. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2316. let udp_packet = check!(UdpPacket::new_checked(ip_payload));
  2317. let udp_repr = check!(UdpRepr::parse(
  2318. &udp_packet,
  2319. &src_addr,
  2320. &dst_addr,
  2321. &self.caps.checksum
  2322. ));
  2323. let udp_payload = udp_packet.payload();
  2324. #[cfg(feature = "socket-udp")]
  2325. for udp_socket in sockets
  2326. .items_mut()
  2327. .filter_map(|i| udp::Socket::downcast_mut(&mut i.socket))
  2328. {
  2329. if udp_socket.accepts(self, &ip_repr, &udp_repr) {
  2330. udp_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2331. return None;
  2332. }
  2333. }
  2334. #[cfg(feature = "socket-dns")]
  2335. for dns_socket in sockets
  2336. .items_mut()
  2337. .filter_map(|i| dns::Socket::downcast_mut(&mut i.socket))
  2338. {
  2339. if dns_socket.accepts(&ip_repr, &udp_repr) {
  2340. dns_socket.process(self, &ip_repr, &udp_repr, udp_payload);
  2341. return None;
  2342. }
  2343. }
  2344. // The packet wasn't handled by a socket, send an ICMP port unreachable packet.
  2345. match ip_repr {
  2346. #[cfg(feature = "proto-ipv4")]
  2347. IpRepr::Ipv4(_) if handled_by_raw_socket => None,
  2348. #[cfg(feature = "proto-ipv6")]
  2349. IpRepr::Ipv6(_) if handled_by_raw_socket => None,
  2350. #[cfg(feature = "proto-ipv4")]
  2351. IpRepr::Ipv4(ipv4_repr) => {
  2352. let payload_len =
  2353. icmp_reply_payload_len(ip_payload.len(), IPV4_MIN_MTU, ipv4_repr.buffer_len());
  2354. let icmpv4_reply_repr = Icmpv4Repr::DstUnreachable {
  2355. reason: Icmpv4DstUnreachable::PortUnreachable,
  2356. header: ipv4_repr,
  2357. data: &ip_payload[0..payload_len],
  2358. };
  2359. self.icmpv4_reply(ipv4_repr, icmpv4_reply_repr)
  2360. }
  2361. #[cfg(feature = "proto-ipv6")]
  2362. IpRepr::Ipv6(ipv6_repr) => {
  2363. let payload_len =
  2364. icmp_reply_payload_len(ip_payload.len(), IPV6_MIN_MTU, ipv6_repr.buffer_len());
  2365. let icmpv6_reply_repr = Icmpv6Repr::DstUnreachable {
  2366. reason: Icmpv6DstUnreachable::PortUnreachable,
  2367. header: ipv6_repr,
  2368. data: &ip_payload[0..payload_len],
  2369. };
  2370. self.icmpv6_reply(ipv6_repr, icmpv6_reply_repr)
  2371. }
  2372. }
  2373. }
  2374. #[cfg(feature = "socket-tcp")]
  2375. fn process_tcp<'frame>(
  2376. &mut self,
  2377. sockets: &mut SocketSet,
  2378. ip_repr: IpRepr,
  2379. ip_payload: &'frame [u8],
  2380. ) -> Option<IpPacket<'frame>> {
  2381. let (src_addr, dst_addr) = (ip_repr.src_addr(), ip_repr.dst_addr());
  2382. let tcp_packet = check!(TcpPacket::new_checked(ip_payload));
  2383. let tcp_repr = check!(TcpRepr::parse(
  2384. &tcp_packet,
  2385. &src_addr,
  2386. &dst_addr,
  2387. &self.caps.checksum
  2388. ));
  2389. for tcp_socket in sockets
  2390. .items_mut()
  2391. .filter_map(|i| tcp::Socket::downcast_mut(&mut i.socket))
  2392. {
  2393. if tcp_socket.accepts(self, &ip_repr, &tcp_repr) {
  2394. return tcp_socket
  2395. .process(self, &ip_repr, &tcp_repr)
  2396. .map(IpPacket::Tcp);
  2397. }
  2398. }
  2399. if tcp_repr.control == TcpControl::Rst {
  2400. // Never reply to a TCP RST packet with another TCP RST packet.
  2401. None
  2402. } else {
  2403. // The packet wasn't handled by a socket, send a TCP RST packet.
  2404. Some(IpPacket::Tcp(tcp::Socket::rst_reply(&ip_repr, &tcp_repr)))
  2405. }
  2406. }
  2407. #[cfg(feature = "medium-ethernet")]
  2408. fn dispatch<Tx>(&mut self, tx_token: Tx, packet: EthernetPacket) -> Result<()>
  2409. where
  2410. Tx: TxToken,
  2411. {
  2412. match packet {
  2413. #[cfg(feature = "proto-ipv4")]
  2414. EthernetPacket::Arp(arp_repr) => {
  2415. let dst_hardware_addr = match arp_repr {
  2416. ArpRepr::EthernetIpv4 {
  2417. target_hardware_addr,
  2418. ..
  2419. } => target_hardware_addr,
  2420. };
  2421. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2422. frame.set_dst_addr(dst_hardware_addr);
  2423. frame.set_ethertype(EthernetProtocol::Arp);
  2424. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  2425. arp_repr.emit(&mut packet);
  2426. })
  2427. }
  2428. EthernetPacket::Ip(packet) => self.dispatch_ip(tx_token, packet, None),
  2429. }
  2430. }
  2431. #[cfg(feature = "medium-ethernet")]
  2432. fn dispatch_ethernet<Tx, F>(&mut self, tx_token: Tx, buffer_len: usize, f: F) -> Result<()>
  2433. where
  2434. Tx: TxToken,
  2435. F: FnOnce(EthernetFrame<&mut [u8]>),
  2436. {
  2437. let tx_len = EthernetFrame::<&[u8]>::buffer_len(buffer_len);
  2438. tx_token.consume(self.now, tx_len, |tx_buffer| {
  2439. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2440. let mut frame = EthernetFrame::new_unchecked(tx_buffer);
  2441. let src_addr = if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2442. addr
  2443. } else {
  2444. return Err(Error::Malformed);
  2445. };
  2446. frame.set_src_addr(src_addr);
  2447. f(frame);
  2448. Ok(())
  2449. })
  2450. }
  2451. fn in_same_network(&self, addr: &IpAddress) -> bool {
  2452. self.ip_addrs.iter().any(|cidr| cidr.contains_addr(addr))
  2453. }
  2454. fn route(&self, addr: &IpAddress, timestamp: Instant) -> Result<IpAddress> {
  2455. // Send directly.
  2456. if self.in_same_network(addr) || addr.is_broadcast() {
  2457. return Ok(*addr);
  2458. }
  2459. // Route via a router.
  2460. match self.routes.lookup(addr, timestamp) {
  2461. Some(router_addr) => Ok(router_addr),
  2462. None => Err(Error::Unaddressable),
  2463. }
  2464. }
  2465. fn has_neighbor(&self, addr: &IpAddress) -> bool {
  2466. match self.route(addr, self.now) {
  2467. Ok(_routed_addr) => match self.caps.medium {
  2468. #[cfg(feature = "medium-ethernet")]
  2469. Medium::Ethernet => self
  2470. .neighbor_cache
  2471. .as_ref()
  2472. .unwrap()
  2473. .lookup(&_routed_addr, self.now)
  2474. .found(),
  2475. #[cfg(feature = "medium-ieee802154")]
  2476. Medium::Ieee802154 => self
  2477. .neighbor_cache
  2478. .as_ref()
  2479. .unwrap()
  2480. .lookup(&_routed_addr, self.now)
  2481. .found(),
  2482. #[cfg(feature = "medium-ip")]
  2483. Medium::Ip => true,
  2484. },
  2485. Err(_) => false,
  2486. }
  2487. }
  2488. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2489. fn lookup_hardware_addr<Tx>(
  2490. &mut self,
  2491. tx_token: Tx,
  2492. src_addr: &IpAddress,
  2493. dst_addr: &IpAddress,
  2494. ) -> Result<(HardwareAddress, Tx)>
  2495. where
  2496. Tx: TxToken,
  2497. {
  2498. if dst_addr.is_broadcast() {
  2499. let hardware_addr = match self.caps.medium {
  2500. #[cfg(feature = "medium-ethernet")]
  2501. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::BROADCAST),
  2502. #[cfg(feature = "medium-ieee802154")]
  2503. Medium::Ieee802154 => HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST),
  2504. #[cfg(feature = "medium-ip")]
  2505. Medium::Ip => unreachable!(),
  2506. };
  2507. return Ok((hardware_addr, tx_token));
  2508. }
  2509. if dst_addr.is_multicast() {
  2510. let b = dst_addr.as_bytes();
  2511. let hardware_addr = match *dst_addr {
  2512. #[cfg(feature = "proto-ipv4")]
  2513. IpAddress::Ipv4(_addr) => {
  2514. HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2515. 0x01,
  2516. 0x00,
  2517. 0x5e,
  2518. b[1] & 0x7F,
  2519. b[2],
  2520. b[3],
  2521. ]))
  2522. }
  2523. #[cfg(feature = "proto-ipv6")]
  2524. IpAddress::Ipv6(_addr) => match self.caps.medium {
  2525. #[cfg(feature = "medium-ethernet")]
  2526. Medium::Ethernet => HardwareAddress::Ethernet(EthernetAddress::from_bytes(&[
  2527. 0x33, 0x33, b[12], b[13], b[14], b[15],
  2528. ])),
  2529. #[cfg(feature = "medium-ieee802154")]
  2530. Medium::Ieee802154 => {
  2531. // Not sure if this is correct
  2532. HardwareAddress::Ieee802154(Ieee802154Address::BROADCAST)
  2533. }
  2534. #[cfg(feature = "medium-ip")]
  2535. Medium::Ip => unreachable!(),
  2536. },
  2537. };
  2538. return Ok((hardware_addr, tx_token));
  2539. }
  2540. let dst_addr = self.route(dst_addr, self.now)?;
  2541. match self
  2542. .neighbor_cache
  2543. .as_mut()
  2544. .unwrap()
  2545. .lookup(&dst_addr, self.now)
  2546. {
  2547. NeighborAnswer::Found(hardware_addr) => return Ok((hardware_addr, tx_token)),
  2548. NeighborAnswer::RateLimited => return Err(Error::Unaddressable),
  2549. _ => (), // XXX
  2550. }
  2551. match (src_addr, dst_addr) {
  2552. #[cfg(feature = "proto-ipv4")]
  2553. (&IpAddress::Ipv4(src_addr), IpAddress::Ipv4(dst_addr)) => {
  2554. net_debug!(
  2555. "address {} not in neighbor cache, sending ARP request",
  2556. dst_addr
  2557. );
  2558. let src_hardware_addr =
  2559. if let Some(HardwareAddress::Ethernet(addr)) = self.hardware_addr {
  2560. addr
  2561. } else {
  2562. return Err(Error::Malformed);
  2563. };
  2564. let arp_repr = ArpRepr::EthernetIpv4 {
  2565. operation: ArpOperation::Request,
  2566. source_hardware_addr: src_hardware_addr,
  2567. source_protocol_addr: src_addr,
  2568. target_hardware_addr: EthernetAddress::BROADCAST,
  2569. target_protocol_addr: dst_addr,
  2570. };
  2571. self.dispatch_ethernet(tx_token, arp_repr.buffer_len(), |mut frame| {
  2572. frame.set_dst_addr(EthernetAddress::BROADCAST);
  2573. frame.set_ethertype(EthernetProtocol::Arp);
  2574. arp_repr.emit(&mut ArpPacket::new_unchecked(frame.payload_mut()))
  2575. })?;
  2576. }
  2577. #[cfg(feature = "proto-ipv6")]
  2578. (&IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => {
  2579. net_debug!(
  2580. "address {} not in neighbor cache, sending Neighbor Solicitation",
  2581. dst_addr
  2582. );
  2583. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  2584. target_addr: dst_addr,
  2585. lladdr: Some(self.hardware_addr.unwrap().into()),
  2586. });
  2587. let packet = IpPacket::Icmpv6((
  2588. Ipv6Repr {
  2589. src_addr,
  2590. dst_addr: dst_addr.solicited_node(),
  2591. next_header: IpProtocol::Icmpv6,
  2592. payload_len: solicit.buffer_len(),
  2593. hop_limit: 0xff,
  2594. },
  2595. solicit,
  2596. ));
  2597. self.dispatch_ip(tx_token, packet, None)?;
  2598. }
  2599. #[allow(unreachable_patterns)]
  2600. _ => (),
  2601. }
  2602. // The request got dispatched, limit the rate on the cache.
  2603. self.neighbor_cache.as_mut().unwrap().limit_rate(self.now);
  2604. Err(Error::Unaddressable)
  2605. }
  2606. fn flush_cache(&mut self) {
  2607. #[cfg(any(feature = "medium-ethernet", feature = "medium-ieee802154"))]
  2608. if let Some(cache) = self.neighbor_cache.as_mut() {
  2609. cache.flush()
  2610. }
  2611. }
  2612. fn dispatch_ip<Tx: TxToken>(
  2613. &mut self,
  2614. tx_token: Tx,
  2615. packet: IpPacket,
  2616. _out_packet: Option<&mut OutPackets<'_>>,
  2617. ) -> Result<()> {
  2618. let ip_repr = packet.ip_repr();
  2619. assert!(!ip_repr.dst_addr().is_unspecified());
  2620. match self.caps.medium {
  2621. #[cfg(feature = "medium-ethernet")]
  2622. Medium::Ethernet => {
  2623. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2624. tx_token,
  2625. &ip_repr.src_addr(),
  2626. &ip_repr.dst_addr(),
  2627. )? {
  2628. (HardwareAddress::Ethernet(addr), tx_token) => (addr, tx_token),
  2629. #[cfg(feature = "medium-ieee802154")]
  2630. (HardwareAddress::Ieee802154(_), _) => unreachable!(),
  2631. };
  2632. let caps = self.caps.clone();
  2633. self.dispatch_ethernet(tx_token, ip_repr.total_len(), |mut frame| {
  2634. frame.set_dst_addr(dst_hardware_addr);
  2635. match ip_repr {
  2636. #[cfg(feature = "proto-ipv4")]
  2637. IpRepr::Ipv4(_) => frame.set_ethertype(EthernetProtocol::Ipv4),
  2638. #[cfg(feature = "proto-ipv6")]
  2639. IpRepr::Ipv6(_) => frame.set_ethertype(EthernetProtocol::Ipv6),
  2640. }
  2641. ip_repr.emit(frame.payload_mut(), &caps.checksum);
  2642. let payload = &mut frame.payload_mut()[ip_repr.buffer_len()..];
  2643. packet.emit_payload(ip_repr, payload, &caps);
  2644. })
  2645. }
  2646. #[cfg(feature = "medium-ip")]
  2647. Medium::Ip => {
  2648. let tx_len = ip_repr.total_len();
  2649. tx_token.consume(self.now, tx_len, |mut tx_buffer| {
  2650. debug_assert!(tx_buffer.as_ref().len() == tx_len);
  2651. ip_repr.emit(&mut tx_buffer, &self.caps.checksum);
  2652. let payload = &mut tx_buffer[ip_repr.buffer_len()..];
  2653. packet.emit_payload(ip_repr, payload, &self.caps);
  2654. Ok(())
  2655. })
  2656. }
  2657. #[cfg(feature = "medium-ieee802154")]
  2658. Medium::Ieee802154 => {
  2659. let (dst_hardware_addr, tx_token) = match self.lookup_hardware_addr(
  2660. tx_token,
  2661. &ip_repr.src_addr(),
  2662. &ip_repr.dst_addr(),
  2663. )? {
  2664. (HardwareAddress::Ieee802154(addr), tx_token) => (addr, tx_token),
  2665. _ => unreachable!(),
  2666. };
  2667. self.dispatch_ieee802154(dst_hardware_addr, &ip_repr, tx_token, packet, _out_packet)
  2668. }
  2669. }
  2670. }
  2671. #[cfg(all(feature = "medium-ieee802154", feature = "proto-sixlowpan"))]
  2672. fn dispatch_ieee802154<Tx: TxToken>(
  2673. &mut self,
  2674. ll_dst_a: Ieee802154Address,
  2675. ip_repr: &IpRepr,
  2676. tx_token: Tx,
  2677. packet: IpPacket,
  2678. _out_packet: Option<&mut OutPackets>,
  2679. ) -> Result<()> {
  2680. // We first need to convert the IPv6 packet to a 6LoWPAN compressed packet.
  2681. // Whenever this packet is to big to fit in the IEEE802.15.4 packet, then we need to
  2682. // fragment it.
  2683. let ll_src_a = self.hardware_addr.map_or_else(
  2684. || Err(Error::Malformed),
  2685. |addr| match addr {
  2686. HardwareAddress::Ieee802154(addr) => Ok(addr),
  2687. _ => Err(Error::Malformed),
  2688. },
  2689. )?;
  2690. let (src_addr, dst_addr) = match (ip_repr.src_addr(), ip_repr.dst_addr()) {
  2691. (IpAddress::Ipv6(src_addr), IpAddress::Ipv6(dst_addr)) => (src_addr, dst_addr),
  2692. #[allow(unreachable_patterns)]
  2693. _ => return Err(Error::Unaddressable),
  2694. };
  2695. // Create the IEEE802.15.4 header.
  2696. let ieee_repr = Ieee802154Repr {
  2697. frame_type: Ieee802154FrameType::Data,
  2698. security_enabled: false,
  2699. frame_pending: false,
  2700. ack_request: false,
  2701. sequence_number: Some(self.get_sequence_number()),
  2702. pan_id_compression: true,
  2703. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2704. dst_pan_id: self.pan_id,
  2705. dst_addr: Some(ll_dst_a),
  2706. src_pan_id: self.pan_id,
  2707. src_addr: Some(ll_src_a),
  2708. };
  2709. // Create the 6LoWPAN IPHC header.
  2710. let iphc_repr = SixlowpanIphcRepr {
  2711. src_addr,
  2712. ll_src_addr: Some(ll_src_a),
  2713. dst_addr,
  2714. ll_dst_addr: Some(ll_dst_a),
  2715. next_header: match &packet {
  2716. IpPacket::Icmpv6(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Icmpv6),
  2717. #[cfg(feature = "socket-tcp")]
  2718. IpPacket::Tcp(_) => SixlowpanNextHeader::Uncompressed(IpProtocol::Tcp),
  2719. #[cfg(feature = "socket-udp")]
  2720. IpPacket::Udp(_) => SixlowpanNextHeader::Compressed,
  2721. #[allow(unreachable_patterns)]
  2722. _ => return Err(Error::Unrecognized),
  2723. },
  2724. hop_limit: ip_repr.hop_limit(),
  2725. ecn: None,
  2726. dscp: None,
  2727. flow_label: None,
  2728. };
  2729. // Now we calculate the total size of the packet.
  2730. // We need to know this, such that we know when to do the fragmentation.
  2731. let mut total_size = 0;
  2732. total_size += iphc_repr.buffer_len();
  2733. let mut _compressed_headers_len = iphc_repr.buffer_len();
  2734. let mut _uncompressed_headers_len = ip_repr.buffer_len();
  2735. #[allow(unreachable_patterns)]
  2736. match packet {
  2737. #[cfg(feature = "socket-udp")]
  2738. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2739. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2740. _compressed_headers_len += udp_repr.header_len();
  2741. _uncompressed_headers_len += udpv6_repr.header_len();
  2742. total_size += udp_repr.header_len() + payload.len();
  2743. }
  2744. #[cfg(feature = "socket-tcp")]
  2745. IpPacket::Tcp((_, tcp_repr)) => {
  2746. total_size += tcp_repr.buffer_len();
  2747. }
  2748. #[cfg(feature = "proto-ipv6")]
  2749. IpPacket::Icmpv6((_, icmp_repr)) => {
  2750. total_size += icmp_repr.buffer_len();
  2751. }
  2752. _ => return Err(Error::Unrecognized),
  2753. }
  2754. let ieee_len = ieee_repr.buffer_len();
  2755. if total_size + ieee_len > 125 {
  2756. cfg_if::cfg_if! {
  2757. if #[cfg(feature = "proto-sixlowpan-fragmentation")] {
  2758. // The packet does not fit in one Ieee802154 frame, so we need fragmentation.
  2759. // We do this by emitting everything in the `out_packet.buffer` from the interface.
  2760. // After emitting everything into that buffer, we send the first fragment heere.
  2761. // When `poll` is called again, we check if out_packet was fully sent, otherwise we
  2762. // call `dispatch_ieee802154_out_packet`, which will transmit the other fragments.
  2763. // `dispatch_ieee802154_out_packet` requires some information about the total packet size,
  2764. // the link local source and destination address...
  2765. let SixlowpanOutPacket {
  2766. buffer,
  2767. packet_len,
  2768. datagram_size,
  2769. datagram_tag,
  2770. sent_bytes,
  2771. fragn_size,
  2772. ll_dst_addr,
  2773. ll_src_addr,
  2774. datagram_offset,
  2775. ..
  2776. } = &mut _out_packet.unwrap().sixlowpan_out_packet;
  2777. *ll_dst_addr = ll_dst_a;
  2778. *ll_src_addr = ll_src_a;
  2779. let mut iphc_packet =
  2780. SixlowpanIphcPacket::new_unchecked(&mut buffer[..iphc_repr.buffer_len()]);
  2781. iphc_repr.emit(&mut iphc_packet);
  2782. let b = &mut buffer[iphc_repr.buffer_len()..];
  2783. #[allow(unreachable_patterns)]
  2784. match packet {
  2785. #[cfg(feature = "socket-udp")]
  2786. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2787. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2788. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2789. &mut b[..udp_repr.header_len() + payload.len()],
  2790. );
  2791. udp_repr.emit(
  2792. &mut udp_packet,
  2793. &iphc_repr.src_addr,
  2794. &iphc_repr.dst_addr,
  2795. payload.len(),
  2796. |buf| buf.copy_from_slice(payload),
  2797. );
  2798. }
  2799. #[cfg(feature = "socket-tcp")]
  2800. IpPacket::Tcp((_, tcp_repr)) => {
  2801. let mut tcp_packet = TcpPacket::new_unchecked(&mut b[..tcp_repr.buffer_len()]);
  2802. tcp_repr.emit(
  2803. &mut tcp_packet,
  2804. &iphc_repr.src_addr.into(),
  2805. &iphc_repr.dst_addr.into(),
  2806. &self.caps.checksum,
  2807. );
  2808. }
  2809. #[cfg(feature = "proto-ipv6")]
  2810. IpPacket::Icmpv6((_, icmp_repr)) => {
  2811. let mut icmp_packet =
  2812. Icmpv6Packet::new_unchecked(&mut b[..icmp_repr.buffer_len()]);
  2813. icmp_repr.emit(
  2814. &iphc_repr.src_addr.into(),
  2815. &iphc_repr.dst_addr.into(),
  2816. &mut icmp_packet,
  2817. &self.caps.checksum,
  2818. );
  2819. }
  2820. _ => return Err(Error::Unrecognized),
  2821. }
  2822. *packet_len = total_size;
  2823. // The datagram size that we need to set in the first fragment header is equal to the
  2824. // IPv6 payload length + 40.
  2825. *datagram_size = (packet.ip_repr().payload_len() + 40) as u16;
  2826. // We generate a random tag.
  2827. let tag = self.get_sixlowpan_fragment_tag();
  2828. // We save the tag for the other fragments that will be created when calling `poll`
  2829. // multiple times.
  2830. *datagram_tag = tag;
  2831. let frag1 = SixlowpanFragRepr::FirstFragment {
  2832. size: *datagram_size,
  2833. tag,
  2834. };
  2835. let fragn = SixlowpanFragRepr::Fragment {
  2836. size: *datagram_size,
  2837. tag,
  2838. offset: 0,
  2839. };
  2840. // We calculate how much data we can send in the first fragment and the other
  2841. // fragments. The eventual IPv6 sizes of these fragments need to be a multiple of eight
  2842. // (except for the last fragment) since the offset field in the fragment is an offset
  2843. // in multiples of 8 octets. This is explained in [RFC 4944 § 5.3].
  2844. //
  2845. // [RFC 4944 § 5.3]: https://datatracker.ietf.org/doc/html/rfc4944#section-5.3
  2846. let header_diff = _uncompressed_headers_len - _compressed_headers_len;
  2847. let frag1_size =
  2848. (125 - ieee_len - frag1.buffer_len() + header_diff) / 8 * 8 - (header_diff);
  2849. *fragn_size = (125 - ieee_len - fragn.buffer_len()) / 8 * 8;
  2850. *sent_bytes = frag1_size;
  2851. *datagram_offset = frag1_size + header_diff;
  2852. tx_token.consume(
  2853. self.now,
  2854. ieee_len + frag1.buffer_len() + frag1_size,
  2855. |mut tx_buf| {
  2856. // Add the IEEE header.
  2857. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2858. ieee_repr.emit(&mut ieee_packet);
  2859. tx_buf = &mut tx_buf[ieee_len..];
  2860. // Add the first fragment header
  2861. let mut frag1_packet = SixlowpanFragPacket::new_unchecked(&mut tx_buf);
  2862. frag1.emit(&mut frag1_packet);
  2863. tx_buf = &mut tx_buf[frag1.buffer_len()..];
  2864. // Add the buffer part.
  2865. tx_buf[..frag1_size].copy_from_slice(&buffer[..frag1_size]);
  2866. Ok(())
  2867. },
  2868. )
  2869. } else {
  2870. net_debug!("Enable the `proto-sixlowpan-fragmentation` feature for fragmentation support.");
  2871. Ok(())
  2872. }
  2873. }
  2874. } else {
  2875. // We don't need fragmentation, so we emit everything to the TX token.
  2876. tx_token.consume(self.now, total_size + ieee_len, |mut tx_buf| {
  2877. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2878. ieee_repr.emit(&mut ieee_packet);
  2879. tx_buf = &mut tx_buf[ieee_len..];
  2880. let mut iphc_packet =
  2881. SixlowpanIphcPacket::new_unchecked(&mut tx_buf[..iphc_repr.buffer_len()]);
  2882. iphc_repr.emit(&mut iphc_packet);
  2883. tx_buf = &mut tx_buf[iphc_repr.buffer_len()..];
  2884. #[allow(unreachable_patterns)]
  2885. match packet {
  2886. #[cfg(feature = "socket-udp")]
  2887. IpPacket::Udp((_, udpv6_repr, payload)) => {
  2888. let udp_repr = SixlowpanUdpNhcRepr(udpv6_repr);
  2889. let mut udp_packet = SixlowpanUdpNhcPacket::new_unchecked(
  2890. &mut tx_buf[..udp_repr.header_len() + payload.len()],
  2891. );
  2892. udp_repr.emit(
  2893. &mut udp_packet,
  2894. &iphc_repr.src_addr,
  2895. &iphc_repr.dst_addr,
  2896. payload.len(),
  2897. |buf| buf.copy_from_slice(payload),
  2898. );
  2899. }
  2900. #[cfg(feature = "socket-tcp")]
  2901. IpPacket::Tcp((_, tcp_repr)) => {
  2902. let mut tcp_packet =
  2903. TcpPacket::new_unchecked(&mut tx_buf[..tcp_repr.buffer_len()]);
  2904. tcp_repr.emit(
  2905. &mut tcp_packet,
  2906. &iphc_repr.src_addr.into(),
  2907. &iphc_repr.dst_addr.into(),
  2908. &self.caps.checksum,
  2909. );
  2910. }
  2911. #[cfg(feature = "proto-ipv6")]
  2912. IpPacket::Icmpv6((_, icmp_repr)) => {
  2913. let mut icmp_packet =
  2914. Icmpv6Packet::new_unchecked(&mut tx_buf[..icmp_repr.buffer_len()]);
  2915. icmp_repr.emit(
  2916. &iphc_repr.src_addr.into(),
  2917. &iphc_repr.dst_addr.into(),
  2918. &mut icmp_packet,
  2919. &self.caps.checksum,
  2920. );
  2921. }
  2922. _ => return Err(Error::Unrecognized),
  2923. }
  2924. Ok(())
  2925. })
  2926. }
  2927. }
  2928. #[cfg(all(
  2929. feature = "medium-ieee802154",
  2930. feature = "proto-sixlowpan-fragmentation"
  2931. ))]
  2932. fn dispatch_ieee802154_out_packet<Tx: TxToken>(
  2933. &mut self,
  2934. tx_token: Tx,
  2935. out_packet: &mut SixlowpanOutPacket,
  2936. ) -> Result<()> {
  2937. let SixlowpanOutPacket {
  2938. buffer,
  2939. packet_len,
  2940. datagram_size,
  2941. datagram_tag,
  2942. datagram_offset,
  2943. sent_bytes,
  2944. fragn_size,
  2945. ll_dst_addr,
  2946. ll_src_addr,
  2947. ..
  2948. } = out_packet;
  2949. // Create the IEEE802.15.4 header.
  2950. let ieee_repr = Ieee802154Repr {
  2951. frame_type: Ieee802154FrameType::Data,
  2952. security_enabled: false,
  2953. frame_pending: false,
  2954. ack_request: false,
  2955. sequence_number: Some(self.get_sequence_number()),
  2956. pan_id_compression: true,
  2957. frame_version: Ieee802154FrameVersion::Ieee802154_2003,
  2958. dst_pan_id: self.pan_id,
  2959. dst_addr: Some(*ll_dst_addr),
  2960. src_pan_id: self.pan_id,
  2961. src_addr: Some(*ll_src_addr),
  2962. };
  2963. // Create the FRAG_N header.
  2964. let fragn = SixlowpanFragRepr::Fragment {
  2965. size: *datagram_size,
  2966. tag: *datagram_tag,
  2967. offset: (*datagram_offset / 8) as u8,
  2968. };
  2969. let ieee_len = ieee_repr.buffer_len();
  2970. let frag_size = (*packet_len - *sent_bytes).min(*fragn_size);
  2971. tx_token.consume(
  2972. self.now,
  2973. ieee_repr.buffer_len() + fragn.buffer_len() + frag_size,
  2974. |mut tx_buf| {
  2975. let mut ieee_packet = Ieee802154Frame::new_unchecked(&mut tx_buf[..ieee_len]);
  2976. ieee_repr.emit(&mut ieee_packet);
  2977. tx_buf = &mut tx_buf[ieee_len..];
  2978. let mut frag_packet =
  2979. SixlowpanFragPacket::new_unchecked(&mut tx_buf[..fragn.buffer_len()]);
  2980. fragn.emit(&mut frag_packet);
  2981. tx_buf = &mut tx_buf[fragn.buffer_len()..];
  2982. // Add the buffer part
  2983. tx_buf[..frag_size].copy_from_slice(&buffer[*sent_bytes..][..frag_size]);
  2984. *sent_bytes += frag_size;
  2985. *datagram_offset += frag_size;
  2986. Ok(())
  2987. },
  2988. )
  2989. }
  2990. #[cfg(feature = "proto-igmp")]
  2991. fn igmp_report_packet<'any>(
  2992. &self,
  2993. version: IgmpVersion,
  2994. group_addr: Ipv4Address,
  2995. ) -> Option<IpPacket<'any>> {
  2996. let iface_addr = self.ipv4_address()?;
  2997. let igmp_repr = IgmpRepr::MembershipReport {
  2998. group_addr,
  2999. version,
  3000. };
  3001. let pkt = IpPacket::Igmp((
  3002. Ipv4Repr {
  3003. src_addr: iface_addr,
  3004. // Send to the group being reported
  3005. dst_addr: group_addr,
  3006. next_header: IpProtocol::Igmp,
  3007. payload_len: igmp_repr.buffer_len(),
  3008. hop_limit: 1,
  3009. // TODO: add Router Alert IPv4 header option. See
  3010. // [#183](https://github.com/m-labs/smoltcp/issues/183).
  3011. },
  3012. igmp_repr,
  3013. ));
  3014. Some(pkt)
  3015. }
  3016. #[cfg(feature = "proto-igmp")]
  3017. fn igmp_leave_packet<'any>(&self, group_addr: Ipv4Address) -> Option<IpPacket<'any>> {
  3018. self.ipv4_address().map(|iface_addr| {
  3019. let igmp_repr = IgmpRepr::LeaveGroup { group_addr };
  3020. IpPacket::Igmp((
  3021. Ipv4Repr {
  3022. src_addr: iface_addr,
  3023. dst_addr: Ipv4Address::MULTICAST_ALL_ROUTERS,
  3024. next_header: IpProtocol::Igmp,
  3025. payload_len: igmp_repr.buffer_len(),
  3026. hop_limit: 1,
  3027. },
  3028. igmp_repr,
  3029. ))
  3030. })
  3031. }
  3032. }
  3033. #[cfg(test)]
  3034. mod test {
  3035. use std::collections::BTreeMap;
  3036. #[cfg(feature = "proto-igmp")]
  3037. use std::vec::Vec;
  3038. use super::*;
  3039. use crate::iface::Interface;
  3040. #[cfg(feature = "medium-ethernet")]
  3041. use crate::iface::NeighborCache;
  3042. use crate::phy::{ChecksumCapabilities, Loopback};
  3043. #[cfg(feature = "proto-igmp")]
  3044. use crate::time::Instant;
  3045. use crate::{Error, Result};
  3046. #[allow(unused)]
  3047. fn fill_slice(s: &mut [u8], val: u8) {
  3048. for x in s.iter_mut() {
  3049. *x = val
  3050. }
  3051. }
  3052. fn create<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3053. #[cfg(feature = "medium-ethernet")]
  3054. return create_ethernet();
  3055. #[cfg(not(feature = "medium-ethernet"))]
  3056. return create_ip();
  3057. }
  3058. #[cfg(all(feature = "medium-ip"))]
  3059. #[allow(unused)]
  3060. fn create_ip<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3061. // Create a basic device
  3062. let mut device = Loopback::new(Medium::Ip);
  3063. let ip_addrs = [
  3064. #[cfg(feature = "proto-ipv4")]
  3065. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3066. #[cfg(feature = "proto-ipv6")]
  3067. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3068. #[cfg(feature = "proto-ipv6")]
  3069. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3070. ];
  3071. let iface_builder = InterfaceBuilder::new().ip_addrs(ip_addrs);
  3072. #[cfg(feature = "proto-ipv4-fragmentation")]
  3073. let iface_builder =
  3074. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3075. #[cfg(feature = "proto-igmp")]
  3076. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3077. let iface = iface_builder.finalize(&mut device);
  3078. (iface, SocketSet::new(vec![]), device)
  3079. }
  3080. #[cfg(all(feature = "medium-ethernet"))]
  3081. fn create_ethernet<'a>() -> (Interface<'a>, SocketSet<'a>, Loopback) {
  3082. // Create a basic device
  3083. let mut device = Loopback::new(Medium::Ethernet);
  3084. let ip_addrs = [
  3085. #[cfg(feature = "proto-ipv4")]
  3086. IpCidr::new(IpAddress::v4(127, 0, 0, 1), 8),
  3087. #[cfg(feature = "proto-ipv6")]
  3088. IpCidr::new(IpAddress::v6(0, 0, 0, 0, 0, 0, 0, 1), 128),
  3089. #[cfg(feature = "proto-ipv6")]
  3090. IpCidr::new(IpAddress::v6(0xfdbe, 0, 0, 0, 0, 0, 0, 1), 64),
  3091. ];
  3092. let iface_builder = InterfaceBuilder::new()
  3093. .hardware_addr(EthernetAddress::default().into())
  3094. .neighbor_cache(NeighborCache::new(BTreeMap::new()))
  3095. .ip_addrs(ip_addrs);
  3096. #[cfg(feature = "proto-sixlowpan-fragmentation")]
  3097. let iface_builder = iface_builder
  3098. .sixlowpan_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()))
  3099. .sixlowpan_out_packet_cache(vec![]);
  3100. #[cfg(feature = "proto-ipv4-fragmentation")]
  3101. let iface_builder =
  3102. iface_builder.ipv4_fragments_cache(PacketAssemblerSet::new(vec![], BTreeMap::new()));
  3103. #[cfg(feature = "proto-igmp")]
  3104. let iface_builder = iface_builder.ipv4_multicast_groups(BTreeMap::new());
  3105. let iface = iface_builder.finalize(&mut device);
  3106. (iface, SocketSet::new(vec![]), device)
  3107. }
  3108. #[cfg(feature = "proto-igmp")]
  3109. fn recv_all(device: &mut Loopback, timestamp: Instant) -> Vec<Vec<u8>> {
  3110. let mut pkts = Vec::new();
  3111. while let Some((rx, _tx)) = device.receive() {
  3112. rx.consume(timestamp, |pkt| {
  3113. pkts.push(pkt.to_vec());
  3114. Ok(())
  3115. })
  3116. .unwrap();
  3117. }
  3118. pkts
  3119. }
  3120. #[derive(Debug, PartialEq)]
  3121. #[cfg_attr(feature = "defmt", derive(defmt::Format))]
  3122. struct MockTxToken;
  3123. impl TxToken for MockTxToken {
  3124. fn consume<R, F>(self, _: Instant, _: usize, _: F) -> Result<R>
  3125. where
  3126. F: FnOnce(&mut [u8]) -> Result<R>,
  3127. {
  3128. Err(Error::Unaddressable)
  3129. }
  3130. }
  3131. #[test]
  3132. #[should_panic(expected = "hardware_addr required option was not set")]
  3133. #[cfg(all(feature = "medium-ethernet"))]
  3134. fn test_builder_initialization_panic() {
  3135. let mut device = Loopback::new(Medium::Ethernet);
  3136. InterfaceBuilder::new().finalize(&mut device);
  3137. }
  3138. #[test]
  3139. #[cfg(feature = "proto-ipv4")]
  3140. fn test_no_icmp_no_unicast_ipv4() {
  3141. let (mut iface, mut sockets, _device) = create();
  3142. // Unknown Ipv4 Protocol
  3143. //
  3144. // Because the destination is the broadcast address
  3145. // this should not trigger and Destination Unreachable
  3146. // response. See RFC 1122 § 3.2.2.
  3147. let repr = IpRepr::Ipv4(Ipv4Repr {
  3148. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3149. dst_addr: Ipv4Address::BROADCAST,
  3150. next_header: IpProtocol::Unknown(0x0c),
  3151. payload_len: 0,
  3152. hop_limit: 0x40,
  3153. });
  3154. let mut bytes = vec![0u8; 54];
  3155. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3156. let frame = Ipv4Packet::new_unchecked(&bytes);
  3157. // Ensure that the unknown protocol frame does not trigger an
  3158. // ICMP error response when the destination address is a
  3159. // broadcast address
  3160. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3161. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  3162. #[cfg(feature = "proto-ipv4-fragmentation")]
  3163. assert_eq!(
  3164. iface.inner.process_ipv4(
  3165. &mut sockets,
  3166. &frame,
  3167. Some(&mut iface.fragments.ipv4_fragments)
  3168. ),
  3169. None
  3170. );
  3171. }
  3172. #[test]
  3173. #[cfg(feature = "proto-ipv6")]
  3174. fn test_no_icmp_no_unicast_ipv6() {
  3175. let (mut iface, mut sockets, _device) = create();
  3176. // Unknown Ipv6 Protocol
  3177. //
  3178. // Because the destination is the broadcast address
  3179. // this should not trigger and Destination Unreachable
  3180. // response. See RFC 1122 § 3.2.2.
  3181. let repr = IpRepr::Ipv6(Ipv6Repr {
  3182. src_addr: Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1),
  3183. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3184. next_header: IpProtocol::Unknown(0x0c),
  3185. payload_len: 0,
  3186. hop_limit: 0x40,
  3187. });
  3188. let mut bytes = vec![0u8; 54];
  3189. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3190. let frame = Ipv6Packet::new_unchecked(&bytes);
  3191. // Ensure that the unknown protocol frame does not trigger an
  3192. // ICMP error response when the destination address is a
  3193. // broadcast address
  3194. assert_eq!(iface.inner.process_ipv6(&mut sockets, &frame), None);
  3195. }
  3196. #[test]
  3197. #[cfg(feature = "proto-ipv4")]
  3198. fn test_icmp_error_no_payload() {
  3199. static NO_BYTES: [u8; 0] = [];
  3200. let (mut iface, mut sockets, _device) = create();
  3201. // Unknown Ipv4 Protocol with no payload
  3202. let repr = IpRepr::Ipv4(Ipv4Repr {
  3203. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3204. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3205. next_header: IpProtocol::Unknown(0x0c),
  3206. payload_len: 0,
  3207. hop_limit: 0x40,
  3208. });
  3209. let mut bytes = vec![0u8; 34];
  3210. repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3211. let frame = Ipv4Packet::new_unchecked(&bytes);
  3212. // The expected Destination Unreachable response due to the
  3213. // unknown protocol
  3214. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3215. reason: Icmpv4DstUnreachable::ProtoUnreachable,
  3216. header: Ipv4Repr {
  3217. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3218. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3219. next_header: IpProtocol::Unknown(12),
  3220. payload_len: 0,
  3221. hop_limit: 64,
  3222. },
  3223. data: &NO_BYTES,
  3224. };
  3225. let expected_repr = IpPacket::Icmpv4((
  3226. Ipv4Repr {
  3227. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3228. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3229. next_header: IpProtocol::Icmp,
  3230. payload_len: icmp_repr.buffer_len(),
  3231. hop_limit: 64,
  3232. },
  3233. icmp_repr,
  3234. ));
  3235. // Ensure that the unknown protocol triggers an error response.
  3236. // And we correctly handle no payload.
  3237. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3238. assert_eq!(
  3239. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3240. Some(expected_repr)
  3241. );
  3242. #[cfg(feature = "proto-ipv4-fragmentation")]
  3243. assert_eq!(
  3244. iface.inner.process_ipv4(
  3245. &mut sockets,
  3246. &frame,
  3247. Some(&mut iface.fragments.ipv4_fragments)
  3248. ),
  3249. Some(expected_repr)
  3250. );
  3251. }
  3252. #[test]
  3253. #[cfg(feature = "proto-ipv4")]
  3254. fn test_local_subnet_broadcasts() {
  3255. let (mut iface, _, _device) = create();
  3256. iface.update_ip_addrs(|addrs| {
  3257. addrs.iter_mut().next().map(|addr| {
  3258. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 1, 23]), 24));
  3259. });
  3260. });
  3261. assert!(iface
  3262. .inner
  3263. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 255])),);
  3264. assert!(!iface
  3265. .inner
  3266. .is_subnet_broadcast(Ipv4Address([192, 168, 1, 254])),);
  3267. iface.update_ip_addrs(|addrs| {
  3268. addrs.iter_mut().next().map(|addr| {
  3269. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 16));
  3270. });
  3271. });
  3272. assert!(!iface
  3273. .inner
  3274. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 255])),);
  3275. assert!(!iface
  3276. .inner
  3277. .is_subnet_broadcast(Ipv4Address([192, 168, 23, 254])),);
  3278. assert!(!iface
  3279. .inner
  3280. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 254])),);
  3281. assert!(iface
  3282. .inner
  3283. .is_subnet_broadcast(Ipv4Address([192, 168, 255, 255])),);
  3284. iface.update_ip_addrs(|addrs| {
  3285. addrs.iter_mut().next().map(|addr| {
  3286. *addr = IpCidr::Ipv4(Ipv4Cidr::new(Ipv4Address([192, 168, 23, 24]), 8));
  3287. });
  3288. });
  3289. assert!(!iface
  3290. .inner
  3291. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 255])),);
  3292. assert!(!iface
  3293. .inner
  3294. .is_subnet_broadcast(Ipv4Address([192, 23, 1, 254])),);
  3295. assert!(!iface
  3296. .inner
  3297. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 254])),);
  3298. assert!(iface
  3299. .inner
  3300. .is_subnet_broadcast(Ipv4Address([192, 255, 255, 255])),);
  3301. }
  3302. #[test]
  3303. #[cfg(all(feature = "socket-udp", feature = "proto-ipv4"))]
  3304. fn test_icmp_error_port_unreachable() {
  3305. static UDP_PAYLOAD: [u8; 12] = [
  3306. 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c, 0x20, 0x57, 0x6f, 0x6c, 0x64, 0x21,
  3307. ];
  3308. let (mut iface, mut sockets, _device) = create();
  3309. let mut udp_bytes_unicast = vec![0u8; 20];
  3310. let mut udp_bytes_broadcast = vec![0u8; 20];
  3311. let mut packet_unicast = UdpPacket::new_unchecked(&mut udp_bytes_unicast);
  3312. let mut packet_broadcast = UdpPacket::new_unchecked(&mut udp_bytes_broadcast);
  3313. let udp_repr = UdpRepr {
  3314. src_port: 67,
  3315. dst_port: 68,
  3316. };
  3317. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3318. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3319. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3320. next_header: IpProtocol::Udp,
  3321. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3322. hop_limit: 64,
  3323. });
  3324. // Emit the representations to a packet
  3325. udp_repr.emit(
  3326. &mut packet_unicast,
  3327. &ip_repr.src_addr(),
  3328. &ip_repr.dst_addr(),
  3329. UDP_PAYLOAD.len(),
  3330. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3331. &ChecksumCapabilities::default(),
  3332. );
  3333. let data = packet_unicast.into_inner();
  3334. // The expected Destination Unreachable ICMPv4 error response due
  3335. // to no sockets listening on the destination port.
  3336. let icmp_repr = Icmpv4Repr::DstUnreachable {
  3337. reason: Icmpv4DstUnreachable::PortUnreachable,
  3338. header: Ipv4Repr {
  3339. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3340. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3341. next_header: IpProtocol::Udp,
  3342. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3343. hop_limit: 64,
  3344. },
  3345. data,
  3346. };
  3347. let expected_repr = IpPacket::Icmpv4((
  3348. Ipv4Repr {
  3349. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3350. dst_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3351. next_header: IpProtocol::Icmp,
  3352. payload_len: icmp_repr.buffer_len(),
  3353. hop_limit: 64,
  3354. },
  3355. icmp_repr,
  3356. ));
  3357. // Ensure that the unknown protocol triggers an error response.
  3358. // And we correctly handle no payload.
  3359. assert_eq!(
  3360. iface.inner.process_udp(&mut sockets, ip_repr, false, data),
  3361. Some(expected_repr)
  3362. );
  3363. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3364. src_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x02]),
  3365. dst_addr: Ipv4Address::BROADCAST,
  3366. next_header: IpProtocol::Udp,
  3367. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3368. hop_limit: 64,
  3369. });
  3370. // Emit the representations to a packet
  3371. udp_repr.emit(
  3372. &mut packet_broadcast,
  3373. &ip_repr.src_addr(),
  3374. &IpAddress::Ipv4(Ipv4Address::BROADCAST),
  3375. UDP_PAYLOAD.len(),
  3376. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3377. &ChecksumCapabilities::default(),
  3378. );
  3379. // Ensure that the port unreachable error does not trigger an
  3380. // ICMP error response when the destination address is a
  3381. // broadcast address and no socket is bound to the port.
  3382. assert_eq!(
  3383. iface
  3384. .inner
  3385. .process_udp(&mut sockets, ip_repr, false, packet_broadcast.into_inner()),
  3386. None
  3387. );
  3388. }
  3389. #[test]
  3390. #[cfg(feature = "socket-udp")]
  3391. fn test_handle_udp_broadcast() {
  3392. use crate::wire::IpEndpoint;
  3393. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  3394. let (mut iface, mut sockets, _device) = create();
  3395. let rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3396. let tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  3397. let udp_socket = udp::Socket::new(rx_buffer, tx_buffer);
  3398. let mut udp_bytes = vec![0u8; 13];
  3399. let mut packet = UdpPacket::new_unchecked(&mut udp_bytes);
  3400. let socket_handle = sockets.add(udp_socket);
  3401. #[cfg(feature = "proto-ipv6")]
  3402. let src_ip = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3403. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3404. let src_ip = Ipv4Address::new(0x7f, 0x00, 0x00, 0x02);
  3405. let udp_repr = UdpRepr {
  3406. src_port: 67,
  3407. dst_port: 68,
  3408. };
  3409. #[cfg(feature = "proto-ipv6")]
  3410. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3411. src_addr: src_ip,
  3412. dst_addr: Ipv6Address::LINK_LOCAL_ALL_NODES,
  3413. next_header: IpProtocol::Udp,
  3414. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3415. hop_limit: 0x40,
  3416. });
  3417. #[cfg(all(not(feature = "proto-ipv6"), feature = "proto-ipv4"))]
  3418. let ip_repr = IpRepr::Ipv4(Ipv4Repr {
  3419. src_addr: src_ip,
  3420. dst_addr: Ipv4Address::BROADCAST,
  3421. next_header: IpProtocol::Udp,
  3422. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  3423. hop_limit: 0x40,
  3424. });
  3425. // Bind the socket to port 68
  3426. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3427. assert_eq!(socket.bind(68), Ok(()));
  3428. assert!(!socket.can_recv());
  3429. assert!(socket.can_send());
  3430. udp_repr.emit(
  3431. &mut packet,
  3432. &ip_repr.src_addr(),
  3433. &ip_repr.dst_addr(),
  3434. UDP_PAYLOAD.len(),
  3435. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  3436. &ChecksumCapabilities::default(),
  3437. );
  3438. // Packet should be handled by bound UDP socket
  3439. assert_eq!(
  3440. iface
  3441. .inner
  3442. .process_udp(&mut sockets, ip_repr, false, packet.into_inner()),
  3443. None
  3444. );
  3445. // Make sure the payload to the UDP packet processed by process_udp is
  3446. // appended to the bound sockets rx_buffer
  3447. let socket = sockets.get_mut::<udp::Socket>(socket_handle);
  3448. assert!(socket.can_recv());
  3449. assert_eq!(
  3450. socket.recv(),
  3451. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_ip.into(), 67)))
  3452. );
  3453. }
  3454. #[test]
  3455. #[cfg(feature = "proto-ipv4")]
  3456. fn test_handle_ipv4_broadcast() {
  3457. use crate::wire::{Icmpv4Packet, Icmpv4Repr, Ipv4Packet};
  3458. let (mut iface, mut sockets, _device) = create();
  3459. let our_ipv4_addr = iface.ipv4_address().unwrap();
  3460. let src_ipv4_addr = Ipv4Address([127, 0, 0, 2]);
  3461. // ICMPv4 echo request
  3462. let icmpv4_data: [u8; 4] = [0xaa, 0x00, 0x00, 0xff];
  3463. let icmpv4_repr = Icmpv4Repr::EchoRequest {
  3464. ident: 0x1234,
  3465. seq_no: 0xabcd,
  3466. data: &icmpv4_data,
  3467. };
  3468. // Send to IPv4 broadcast address
  3469. let ipv4_repr = Ipv4Repr {
  3470. src_addr: src_ipv4_addr,
  3471. dst_addr: Ipv4Address::BROADCAST,
  3472. next_header: IpProtocol::Icmp,
  3473. hop_limit: 64,
  3474. payload_len: icmpv4_repr.buffer_len(),
  3475. };
  3476. // Emit to ip frame
  3477. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + icmpv4_repr.buffer_len()];
  3478. let frame = {
  3479. ipv4_repr.emit(
  3480. &mut Ipv4Packet::new_unchecked(&mut bytes),
  3481. &ChecksumCapabilities::default(),
  3482. );
  3483. icmpv4_repr.emit(
  3484. &mut Icmpv4Packet::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  3485. &ChecksumCapabilities::default(),
  3486. );
  3487. Ipv4Packet::new_unchecked(&bytes)
  3488. };
  3489. // Expected ICMPv4 echo reply
  3490. let expected_icmpv4_repr = Icmpv4Repr::EchoReply {
  3491. ident: 0x1234,
  3492. seq_no: 0xabcd,
  3493. data: &icmpv4_data,
  3494. };
  3495. let expected_ipv4_repr = Ipv4Repr {
  3496. src_addr: our_ipv4_addr,
  3497. dst_addr: src_ipv4_addr,
  3498. next_header: IpProtocol::Icmp,
  3499. hop_limit: 64,
  3500. payload_len: expected_icmpv4_repr.buffer_len(),
  3501. };
  3502. let expected_packet = IpPacket::Icmpv4((expected_ipv4_repr, expected_icmpv4_repr));
  3503. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  3504. assert_eq!(
  3505. iface.inner.process_ipv4(&mut sockets, &frame, None),
  3506. Some(expected_packet)
  3507. );
  3508. #[cfg(feature = "proto-ipv4-fragmentation")]
  3509. assert_eq!(
  3510. iface.inner.process_ipv4(
  3511. &mut sockets,
  3512. &frame,
  3513. Some(&mut iface.fragments.ipv4_fragments)
  3514. ),
  3515. Some(expected_packet)
  3516. );
  3517. }
  3518. #[test]
  3519. #[cfg(feature = "socket-udp")]
  3520. fn test_icmp_reply_size() {
  3521. #[cfg(feature = "proto-ipv6")]
  3522. use crate::wire::Icmpv6DstUnreachable;
  3523. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3524. use crate::wire::IPV4_MIN_MTU as MIN_MTU;
  3525. #[cfg(feature = "proto-ipv6")]
  3526. use crate::wire::IPV6_MIN_MTU as MIN_MTU;
  3527. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3528. const MAX_PAYLOAD_LEN: usize = 528;
  3529. #[cfg(feature = "proto-ipv6")]
  3530. const MAX_PAYLOAD_LEN: usize = 1192;
  3531. let (mut iface, mut sockets, _device) = create();
  3532. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3533. let src_addr = Ipv4Address([192, 168, 1, 1]);
  3534. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3535. let dst_addr = Ipv4Address([192, 168, 1, 2]);
  3536. #[cfg(feature = "proto-ipv6")]
  3537. let src_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3538. #[cfg(feature = "proto-ipv6")]
  3539. let dst_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 2);
  3540. // UDP packet that if not tructated will cause a icmp port unreachable reply
  3541. // to exeed the minimum mtu bytes in length.
  3542. let udp_repr = UdpRepr {
  3543. src_port: 67,
  3544. dst_port: 68,
  3545. };
  3546. let mut bytes = vec![0xff; udp_repr.header_len() + MAX_PAYLOAD_LEN];
  3547. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  3548. udp_repr.emit(
  3549. &mut packet,
  3550. &src_addr.into(),
  3551. &dst_addr.into(),
  3552. MAX_PAYLOAD_LEN,
  3553. |buf| fill_slice(buf, 0x2a),
  3554. &ChecksumCapabilities::default(),
  3555. );
  3556. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3557. let ip_repr = Ipv4Repr {
  3558. src_addr,
  3559. dst_addr,
  3560. next_header: IpProtocol::Udp,
  3561. hop_limit: 64,
  3562. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3563. };
  3564. #[cfg(feature = "proto-ipv6")]
  3565. let ip_repr = Ipv6Repr {
  3566. src_addr,
  3567. dst_addr,
  3568. next_header: IpProtocol::Udp,
  3569. hop_limit: 64,
  3570. payload_len: udp_repr.header_len() + MAX_PAYLOAD_LEN,
  3571. };
  3572. let payload = packet.into_inner();
  3573. // Expected packets
  3574. #[cfg(feature = "proto-ipv6")]
  3575. let expected_icmp_repr = Icmpv6Repr::DstUnreachable {
  3576. reason: Icmpv6DstUnreachable::PortUnreachable,
  3577. header: ip_repr,
  3578. data: &payload[..MAX_PAYLOAD_LEN],
  3579. };
  3580. #[cfg(feature = "proto-ipv6")]
  3581. let expected_ip_repr = Ipv6Repr {
  3582. src_addr: dst_addr,
  3583. dst_addr: src_addr,
  3584. next_header: IpProtocol::Icmpv6,
  3585. hop_limit: 64,
  3586. payload_len: expected_icmp_repr.buffer_len(),
  3587. };
  3588. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3589. let expected_icmp_repr = Icmpv4Repr::DstUnreachable {
  3590. reason: Icmpv4DstUnreachable::PortUnreachable,
  3591. header: ip_repr,
  3592. data: &payload[..MAX_PAYLOAD_LEN],
  3593. };
  3594. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3595. let expected_ip_repr = Ipv4Repr {
  3596. src_addr: dst_addr,
  3597. dst_addr: src_addr,
  3598. next_header: IpProtocol::Icmp,
  3599. hop_limit: 64,
  3600. payload_len: expected_icmp_repr.buffer_len(),
  3601. };
  3602. // The expected packet does not exceed the IPV4_MIN_MTU
  3603. #[cfg(feature = "proto-ipv6")]
  3604. assert_eq!(
  3605. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3606. MIN_MTU
  3607. );
  3608. // The expected packet does not exceed the IPV4_MIN_MTU
  3609. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3610. assert_eq!(
  3611. expected_ip_repr.buffer_len() + expected_icmp_repr.buffer_len(),
  3612. MIN_MTU
  3613. );
  3614. // The expected packet and the generated packet are equal
  3615. #[cfg(all(feature = "proto-ipv4", not(feature = "proto-ipv6")))]
  3616. assert_eq!(
  3617. iface
  3618. .inner
  3619. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3620. Some(IpPacket::Icmpv4((expected_ip_repr, expected_icmp_repr)))
  3621. );
  3622. #[cfg(feature = "proto-ipv6")]
  3623. assert_eq!(
  3624. iface
  3625. .inner
  3626. .process_udp(&mut sockets, ip_repr.into(), false, payload),
  3627. Some(IpPacket::Icmpv6((expected_ip_repr, expected_icmp_repr)))
  3628. );
  3629. }
  3630. #[test]
  3631. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3632. fn test_handle_valid_arp_request() {
  3633. let (mut iface, mut sockets, _device) = create_ethernet();
  3634. let mut eth_bytes = vec![0u8; 42];
  3635. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3636. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3637. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3638. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3639. let repr = ArpRepr::EthernetIpv4 {
  3640. operation: ArpOperation::Request,
  3641. source_hardware_addr: remote_hw_addr,
  3642. source_protocol_addr: remote_ip_addr,
  3643. target_hardware_addr: EthernetAddress::default(),
  3644. target_protocol_addr: local_ip_addr,
  3645. };
  3646. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3647. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3648. frame.set_src_addr(remote_hw_addr);
  3649. frame.set_ethertype(EthernetProtocol::Arp);
  3650. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3651. repr.emit(&mut packet);
  3652. // Ensure an ARP Request for us triggers an ARP Reply
  3653. assert_eq!(
  3654. iface
  3655. .inner
  3656. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3657. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3658. operation: ArpOperation::Reply,
  3659. source_hardware_addr: local_hw_addr,
  3660. source_protocol_addr: local_ip_addr,
  3661. target_hardware_addr: remote_hw_addr,
  3662. target_protocol_addr: remote_ip_addr
  3663. }))
  3664. );
  3665. // Ensure the address of the requestor was entered in the cache
  3666. assert_eq!(
  3667. iface.inner.lookup_hardware_addr(
  3668. MockTxToken,
  3669. &IpAddress::Ipv4(local_ip_addr),
  3670. &IpAddress::Ipv4(remote_ip_addr)
  3671. ),
  3672. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3673. );
  3674. }
  3675. #[test]
  3676. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv6"))]
  3677. fn test_handle_valid_ndisc_request() {
  3678. let (mut iface, mut sockets, _device) = create_ethernet();
  3679. let mut eth_bytes = vec![0u8; 86];
  3680. let local_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 1);
  3681. let remote_ip_addr = Ipv6Address::new(0xfdbe, 0, 0, 0, 0, 0, 0, 2);
  3682. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3683. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3684. let solicit = Icmpv6Repr::Ndisc(NdiscRepr::NeighborSolicit {
  3685. target_addr: local_ip_addr,
  3686. lladdr: Some(remote_hw_addr.into()),
  3687. });
  3688. let ip_repr = IpRepr::Ipv6(Ipv6Repr {
  3689. src_addr: remote_ip_addr,
  3690. dst_addr: local_ip_addr.solicited_node(),
  3691. next_header: IpProtocol::Icmpv6,
  3692. hop_limit: 0xff,
  3693. payload_len: solicit.buffer_len(),
  3694. });
  3695. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3696. frame.set_dst_addr(EthernetAddress([0x33, 0x33, 0x00, 0x00, 0x00, 0x00]));
  3697. frame.set_src_addr(remote_hw_addr);
  3698. frame.set_ethertype(EthernetProtocol::Ipv6);
  3699. ip_repr.emit(frame.payload_mut(), &ChecksumCapabilities::default());
  3700. solicit.emit(
  3701. &remote_ip_addr.into(),
  3702. &local_ip_addr.solicited_node().into(),
  3703. &mut Icmpv6Packet::new_unchecked(&mut frame.payload_mut()[ip_repr.buffer_len()..]),
  3704. &ChecksumCapabilities::default(),
  3705. );
  3706. let icmpv6_expected = Icmpv6Repr::Ndisc(NdiscRepr::NeighborAdvert {
  3707. flags: NdiscNeighborFlags::SOLICITED,
  3708. target_addr: local_ip_addr,
  3709. lladdr: Some(local_hw_addr.into()),
  3710. });
  3711. let ipv6_expected = Ipv6Repr {
  3712. src_addr: local_ip_addr,
  3713. dst_addr: remote_ip_addr,
  3714. next_header: IpProtocol::Icmpv6,
  3715. hop_limit: 0xff,
  3716. payload_len: icmpv6_expected.buffer_len(),
  3717. };
  3718. // Ensure an Neighbor Solicitation triggers a Neighbor Advertisement
  3719. assert_eq!(
  3720. iface
  3721. .inner
  3722. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3723. Some(EthernetPacket::Ip(IpPacket::Icmpv6((
  3724. ipv6_expected,
  3725. icmpv6_expected
  3726. ))))
  3727. );
  3728. // Ensure the address of the requestor was entered in the cache
  3729. assert_eq!(
  3730. iface.inner.lookup_hardware_addr(
  3731. MockTxToken,
  3732. &IpAddress::Ipv6(local_ip_addr),
  3733. &IpAddress::Ipv6(remote_ip_addr)
  3734. ),
  3735. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3736. );
  3737. }
  3738. #[test]
  3739. #[cfg(all(feature = "medium-ethernet", feature = "proto-ipv4"))]
  3740. fn test_handle_other_arp_request() {
  3741. let (mut iface, mut sockets, _device) = create_ethernet();
  3742. let mut eth_bytes = vec![0u8; 42];
  3743. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3744. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3745. let repr = ArpRepr::EthernetIpv4 {
  3746. operation: ArpOperation::Request,
  3747. source_hardware_addr: remote_hw_addr,
  3748. source_protocol_addr: remote_ip_addr,
  3749. target_hardware_addr: EthernetAddress::default(),
  3750. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x03]),
  3751. };
  3752. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3753. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3754. frame.set_src_addr(remote_hw_addr);
  3755. frame.set_ethertype(EthernetProtocol::Arp);
  3756. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3757. repr.emit(&mut packet);
  3758. // Ensure an ARP Request for someone else does not trigger an ARP Reply
  3759. assert_eq!(
  3760. iface
  3761. .inner
  3762. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3763. None
  3764. );
  3765. // Ensure the address of the requestor was NOT entered in the cache
  3766. assert_eq!(
  3767. iface.inner.lookup_hardware_addr(
  3768. MockTxToken,
  3769. &IpAddress::Ipv4(Ipv4Address([0x7f, 0x00, 0x00, 0x01])),
  3770. &IpAddress::Ipv4(remote_ip_addr)
  3771. ),
  3772. Err(Error::Unaddressable)
  3773. );
  3774. }
  3775. #[test]
  3776. #[cfg(all(
  3777. feature = "medium-ethernet",
  3778. feature = "proto-ipv4",
  3779. not(feature = "medium-ieee802154")
  3780. ))]
  3781. fn test_arp_flush_after_update_ip() {
  3782. let (mut iface, mut sockets, _device) = create_ethernet();
  3783. let mut eth_bytes = vec![0u8; 42];
  3784. let local_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3785. let remote_ip_addr = Ipv4Address([0x7f, 0x00, 0x00, 0x02]);
  3786. let local_hw_addr = EthernetAddress([0x00, 0x00, 0x00, 0x00, 0x00, 0x00]);
  3787. let remote_hw_addr = EthernetAddress([0x52, 0x54, 0x00, 0x00, 0x00, 0x00]);
  3788. let repr = ArpRepr::EthernetIpv4 {
  3789. operation: ArpOperation::Request,
  3790. source_hardware_addr: remote_hw_addr,
  3791. source_protocol_addr: remote_ip_addr,
  3792. target_hardware_addr: EthernetAddress::default(),
  3793. target_protocol_addr: Ipv4Address([0x7f, 0x00, 0x00, 0x01]),
  3794. };
  3795. let mut frame = EthernetFrame::new_unchecked(&mut eth_bytes);
  3796. frame.set_dst_addr(EthernetAddress::BROADCAST);
  3797. frame.set_src_addr(remote_hw_addr);
  3798. frame.set_ethertype(EthernetProtocol::Arp);
  3799. {
  3800. let mut packet = ArpPacket::new_unchecked(frame.payload_mut());
  3801. repr.emit(&mut packet);
  3802. }
  3803. // Ensure an ARP Request for us triggers an ARP Reply
  3804. assert_eq!(
  3805. iface
  3806. .inner
  3807. .process_ethernet(&mut sockets, frame.into_inner(), &mut iface.fragments),
  3808. Some(EthernetPacket::Arp(ArpRepr::EthernetIpv4 {
  3809. operation: ArpOperation::Reply,
  3810. source_hardware_addr: local_hw_addr,
  3811. source_protocol_addr: local_ip_addr,
  3812. target_hardware_addr: remote_hw_addr,
  3813. target_protocol_addr: remote_ip_addr
  3814. }))
  3815. );
  3816. // Ensure the address of the requestor was entered in the cache
  3817. assert_eq!(
  3818. iface.inner.lookup_hardware_addr(
  3819. MockTxToken,
  3820. &IpAddress::Ipv4(local_ip_addr),
  3821. &IpAddress::Ipv4(remote_ip_addr)
  3822. ),
  3823. Ok((HardwareAddress::Ethernet(remote_hw_addr), MockTxToken))
  3824. );
  3825. // Update IP addrs to trigger ARP cache flush
  3826. let local_ip_addr_new = Ipv4Address([0x7f, 0x00, 0x00, 0x01]);
  3827. iface.update_ip_addrs(|addrs| {
  3828. addrs.iter_mut().next().map(|addr| {
  3829. *addr = IpCidr::Ipv4(Ipv4Cidr::new(local_ip_addr_new, 24));
  3830. });
  3831. });
  3832. // ARP cache flush after address change
  3833. assert!(!iface.inner.has_neighbor(&IpAddress::Ipv4(remote_ip_addr)));
  3834. }
  3835. #[test]
  3836. #[cfg(all(feature = "socket-icmp", feature = "proto-ipv4"))]
  3837. fn test_icmpv4_socket() {
  3838. use crate::wire::Icmpv4Packet;
  3839. let (mut iface, mut sockets, _device) = create();
  3840. let rx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3841. let tx_buffer = icmp::PacketBuffer::new(vec![icmp::PacketMetadata::EMPTY], vec![0; 24]);
  3842. let icmpv4_socket = icmp::Socket::new(rx_buffer, tx_buffer);
  3843. let socket_handle = sockets.add(icmpv4_socket);
  3844. let ident = 0x1234;
  3845. let seq_no = 0x5432;
  3846. let echo_data = &[0xff; 16];
  3847. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3848. // Bind to the ID 0x1234
  3849. assert_eq!(socket.bind(icmp::Endpoint::Ident(ident)), Ok(()));
  3850. // Ensure the ident we bound to and the ident of the packet are the same.
  3851. let mut bytes = [0xff; 24];
  3852. let mut packet = Icmpv4Packet::new_unchecked(&mut bytes[..]);
  3853. let echo_repr = Icmpv4Repr::EchoRequest {
  3854. ident,
  3855. seq_no,
  3856. data: echo_data,
  3857. };
  3858. echo_repr.emit(&mut packet, &ChecksumCapabilities::default());
  3859. let icmp_data = &*packet.into_inner();
  3860. let ipv4_repr = Ipv4Repr {
  3861. src_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x02),
  3862. dst_addr: Ipv4Address::new(0x7f, 0x00, 0x00, 0x01),
  3863. next_header: IpProtocol::Icmp,
  3864. payload_len: 24,
  3865. hop_limit: 64,
  3866. };
  3867. let ip_repr = IpRepr::Ipv4(ipv4_repr);
  3868. // Open a socket and ensure the packet is handled due to the listening
  3869. // socket.
  3870. assert!(!sockets.get_mut::<icmp::Socket>(socket_handle).can_recv());
  3871. // Confirm we still get EchoReply from `smoltcp` even with the ICMP socket listening
  3872. let echo_reply = Icmpv4Repr::EchoReply {
  3873. ident,
  3874. seq_no,
  3875. data: echo_data,
  3876. };
  3877. let ipv4_reply = Ipv4Repr {
  3878. src_addr: ipv4_repr.dst_addr,
  3879. dst_addr: ipv4_repr.src_addr,
  3880. ..ipv4_repr
  3881. };
  3882. assert_eq!(
  3883. iface.inner.process_icmpv4(&mut sockets, ip_repr, icmp_data),
  3884. Some(IpPacket::Icmpv4((ipv4_reply, echo_reply)))
  3885. );
  3886. let socket = sockets.get_mut::<icmp::Socket>(socket_handle);
  3887. assert!(socket.can_recv());
  3888. assert_eq!(
  3889. socket.recv(),
  3890. Ok((
  3891. icmp_data,
  3892. IpAddress::Ipv4(Ipv4Address::new(0x7f, 0x00, 0x00, 0x02))
  3893. ))
  3894. );
  3895. }
  3896. #[test]
  3897. #[cfg(feature = "proto-ipv6")]
  3898. fn test_solicited_node_addrs() {
  3899. let (mut iface, _, _device) = create();
  3900. let mut new_addrs = vec![
  3901. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 1, 2, 0, 2), 64),
  3902. IpCidr::new(IpAddress::v6(0xfe80, 0, 0, 0, 3, 4, 0, 0xffff), 64),
  3903. ];
  3904. iface.update_ip_addrs(|addrs| {
  3905. new_addrs.extend(addrs.to_vec());
  3906. *addrs = From::from(new_addrs);
  3907. });
  3908. assert!(iface
  3909. .inner
  3910. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0002)));
  3911. assert!(iface
  3912. .inner
  3913. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0xffff)));
  3914. assert!(!iface
  3915. .inner
  3916. .has_solicited_node(Ipv6Address::new(0xff02, 0, 0, 0, 0, 1, 0xff00, 0x0003)));
  3917. }
  3918. #[test]
  3919. #[cfg(feature = "proto-ipv6")]
  3920. fn test_icmpv6_nxthdr_unknown() {
  3921. let (mut iface, mut sockets, _device) = create();
  3922. let remote_ip_addr = Ipv6Address::new(0xfe80, 0, 0, 0, 0, 0, 0, 1);
  3923. let payload = [0x12, 0x34, 0x56, 0x78];
  3924. let ipv6_repr = Ipv6Repr {
  3925. src_addr: remote_ip_addr,
  3926. dst_addr: Ipv6Address::LOOPBACK,
  3927. next_header: IpProtocol::HopByHop,
  3928. payload_len: 12,
  3929. hop_limit: 0x40,
  3930. };
  3931. let mut bytes = vec![0; 52];
  3932. let frame = {
  3933. let ip_repr = IpRepr::Ipv6(ipv6_repr);
  3934. ip_repr.emit(&mut bytes, &ChecksumCapabilities::default());
  3935. let mut offset = ipv6_repr.buffer_len();
  3936. {
  3937. let mut hbh_pkt = Ipv6HopByHopHeader::new_unchecked(&mut bytes[offset..]);
  3938. hbh_pkt.set_next_header(IpProtocol::Unknown(0x0c));
  3939. hbh_pkt.set_header_len(0);
  3940. offset += 8;
  3941. {
  3942. let mut pad_pkt = Ipv6Option::new_unchecked(&mut *hbh_pkt.options_mut());
  3943. Ipv6OptionRepr::PadN(3).emit(&mut pad_pkt);
  3944. }
  3945. {
  3946. let mut pad_pkt = Ipv6Option::new_unchecked(&mut hbh_pkt.options_mut()[5..]);
  3947. Ipv6OptionRepr::Pad1.emit(&mut pad_pkt);
  3948. }
  3949. }
  3950. bytes[offset..].copy_from_slice(&payload);
  3951. Ipv6Packet::new_unchecked(&bytes)
  3952. };
  3953. let reply_icmp_repr = Icmpv6Repr::ParamProblem {
  3954. reason: Icmpv6ParamProblem::UnrecognizedNxtHdr,
  3955. pointer: 40,
  3956. header: ipv6_repr,
  3957. data: &payload[..],
  3958. };
  3959. let reply_ipv6_repr = Ipv6Repr {
  3960. src_addr: Ipv6Address::LOOPBACK,
  3961. dst_addr: remote_ip_addr,
  3962. next_header: IpProtocol::Icmpv6,
  3963. payload_len: reply_icmp_repr.buffer_len(),
  3964. hop_limit: 0x40,
  3965. };
  3966. // Ensure the unknown next header causes a ICMPv6 Parameter Problem
  3967. // error message to be sent to the sender.
  3968. assert_eq!(
  3969. iface.inner.process_ipv6(&mut sockets, &frame),
  3970. Some(IpPacket::Icmpv6((reply_ipv6_repr, reply_icmp_repr)))
  3971. );
  3972. }
  3973. #[test]
  3974. #[cfg(feature = "proto-igmp")]
  3975. fn test_handle_igmp() {
  3976. fn recv_igmp(device: &mut Loopback, timestamp: Instant) -> Vec<(Ipv4Repr, IgmpRepr)> {
  3977. let caps = device.capabilities();
  3978. let checksum_caps = &caps.checksum;
  3979. recv_all(device, timestamp)
  3980. .iter()
  3981. .filter_map(|frame| {
  3982. let ipv4_packet = match caps.medium {
  3983. #[cfg(feature = "medium-ethernet")]
  3984. Medium::Ethernet => {
  3985. let eth_frame = EthernetFrame::new_checked(frame).ok()?;
  3986. Ipv4Packet::new_checked(eth_frame.payload()).ok()?
  3987. }
  3988. #[cfg(feature = "medium-ip")]
  3989. Medium::Ip => Ipv4Packet::new_checked(&frame[..]).ok()?,
  3990. #[cfg(feature = "medium-ieee802154")]
  3991. Medium::Ieee802154 => todo!(),
  3992. };
  3993. let ipv4_repr = Ipv4Repr::parse(&ipv4_packet, checksum_caps).ok()?;
  3994. let ip_payload = ipv4_packet.payload();
  3995. let igmp_packet = IgmpPacket::new_checked(ip_payload).ok()?;
  3996. let igmp_repr = IgmpRepr::parse(&igmp_packet).ok()?;
  3997. Some((ipv4_repr, igmp_repr))
  3998. })
  3999. .collect::<Vec<_>>()
  4000. }
  4001. let groups = [
  4002. Ipv4Address::new(224, 0, 0, 22),
  4003. Ipv4Address::new(224, 0, 0, 56),
  4004. ];
  4005. let (mut iface, mut sockets, mut device) = create();
  4006. // Join multicast groups
  4007. let timestamp = Instant::now();
  4008. for group in &groups {
  4009. iface
  4010. .join_multicast_group(&mut device, *group, timestamp)
  4011. .unwrap();
  4012. }
  4013. let reports = recv_igmp(&mut device, timestamp);
  4014. assert_eq!(reports.len(), 2);
  4015. for (i, group_addr) in groups.iter().enumerate() {
  4016. assert_eq!(reports[i].0.next_header, IpProtocol::Igmp);
  4017. assert_eq!(reports[i].0.dst_addr, *group_addr);
  4018. assert_eq!(
  4019. reports[i].1,
  4020. IgmpRepr::MembershipReport {
  4021. group_addr: *group_addr,
  4022. version: IgmpVersion::Version2,
  4023. }
  4024. );
  4025. }
  4026. // General query
  4027. let timestamp = Instant::now();
  4028. const GENERAL_QUERY_BYTES: &[u8] = &[
  4029. 0x46, 0xc0, 0x00, 0x24, 0xed, 0xb4, 0x00, 0x00, 0x01, 0x02, 0x47, 0x43, 0xac, 0x16,
  4030. 0x63, 0x04, 0xe0, 0x00, 0x00, 0x01, 0x94, 0x04, 0x00, 0x00, 0x11, 0x64, 0xec, 0x8f,
  4031. 0x00, 0x00, 0x00, 0x00, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  4032. 0x00, 0x00, 0x00, 0x00,
  4033. ];
  4034. {
  4035. // Transmit GENERAL_QUERY_BYTES into loopback
  4036. let tx_token = device.transmit().unwrap();
  4037. tx_token
  4038. .consume(timestamp, GENERAL_QUERY_BYTES.len(), |buffer| {
  4039. buffer.copy_from_slice(GENERAL_QUERY_BYTES);
  4040. Ok(())
  4041. })
  4042. .unwrap();
  4043. }
  4044. // Trigger processing until all packets received through the
  4045. // loopback have been processed, including responses to
  4046. // GENERAL_QUERY_BYTES. Therefore `recv_all()` would return 0
  4047. // pkts that could be checked.
  4048. iface.socket_ingress(&mut device, &mut sockets);
  4049. // Leave multicast groups
  4050. let timestamp = Instant::now();
  4051. for group in &groups {
  4052. iface
  4053. .leave_multicast_group(&mut device, *group, timestamp)
  4054. .unwrap();
  4055. }
  4056. let leaves = recv_igmp(&mut device, timestamp);
  4057. assert_eq!(leaves.len(), 2);
  4058. for (i, group_addr) in groups.iter().cloned().enumerate() {
  4059. assert_eq!(leaves[i].0.next_header, IpProtocol::Igmp);
  4060. assert_eq!(leaves[i].0.dst_addr, Ipv4Address::MULTICAST_ALL_ROUTERS);
  4061. assert_eq!(leaves[i].1, IgmpRepr::LeaveGroup { group_addr });
  4062. }
  4063. }
  4064. #[test]
  4065. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw"))]
  4066. fn test_raw_socket_no_reply() {
  4067. use crate::wire::{IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4068. let (mut iface, mut sockets, _device) = create();
  4069. let packets = 1;
  4070. let rx_buffer =
  4071. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4072. let tx_buffer = raw::PacketBuffer::new(
  4073. vec![raw::PacketMetadata::EMPTY; packets],
  4074. vec![0; 48 * packets],
  4075. );
  4076. let raw_socket = raw::Socket::new(IpVersion::Ipv4, IpProtocol::Udp, rx_buffer, tx_buffer);
  4077. sockets.add(raw_socket);
  4078. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4079. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4080. const PAYLOAD_LEN: usize = 10;
  4081. let udp_repr = UdpRepr {
  4082. src_port: 67,
  4083. dst_port: 68,
  4084. };
  4085. let mut bytes = vec![0xff; udp_repr.header_len() + PAYLOAD_LEN];
  4086. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4087. udp_repr.emit(
  4088. &mut packet,
  4089. &src_addr.into(),
  4090. &dst_addr.into(),
  4091. PAYLOAD_LEN,
  4092. |buf| fill_slice(buf, 0x2a),
  4093. &ChecksumCapabilities::default(),
  4094. );
  4095. let ipv4_repr = Ipv4Repr {
  4096. src_addr,
  4097. dst_addr,
  4098. next_header: IpProtocol::Udp,
  4099. hop_limit: 64,
  4100. payload_len: udp_repr.header_len() + PAYLOAD_LEN,
  4101. };
  4102. // Emit to frame
  4103. let mut bytes = vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + PAYLOAD_LEN];
  4104. let frame = {
  4105. ipv4_repr.emit(
  4106. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4107. &ChecksumCapabilities::default(),
  4108. );
  4109. udp_repr.emit(
  4110. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4111. &src_addr.into(),
  4112. &dst_addr.into(),
  4113. PAYLOAD_LEN,
  4114. |buf| fill_slice(buf, 0x2a),
  4115. &ChecksumCapabilities::default(),
  4116. );
  4117. Ipv4Packet::new_unchecked(&bytes)
  4118. };
  4119. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4120. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4121. #[cfg(feature = "proto-ipv4-fragmentation")]
  4122. assert_eq!(
  4123. iface.inner.process_ipv4(
  4124. &mut sockets,
  4125. &frame,
  4126. Some(&mut iface.fragments.ipv4_fragments)
  4127. ),
  4128. None
  4129. );
  4130. }
  4131. #[test]
  4132. #[cfg(all(feature = "proto-ipv4", feature = "socket-raw", feature = "socket-udp"))]
  4133. fn test_raw_socket_with_udp_socket() {
  4134. use crate::wire::{IpEndpoint, IpVersion, Ipv4Packet, UdpPacket, UdpRepr};
  4135. static UDP_PAYLOAD: [u8; 5] = [0x48, 0x65, 0x6c, 0x6c, 0x6f];
  4136. let (mut iface, mut sockets, _device) = create();
  4137. let udp_rx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4138. let udp_tx_buffer = udp::PacketBuffer::new(vec![udp::PacketMetadata::EMPTY], vec![0; 15]);
  4139. let udp_socket = udp::Socket::new(udp_rx_buffer, udp_tx_buffer);
  4140. let udp_socket_handle = sockets.add(udp_socket);
  4141. // Bind the socket to port 68
  4142. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4143. assert_eq!(socket.bind(68), Ok(()));
  4144. assert!(!socket.can_recv());
  4145. assert!(socket.can_send());
  4146. let packets = 1;
  4147. let raw_rx_buffer =
  4148. raw::PacketBuffer::new(vec![raw::PacketMetadata::EMPTY; packets], vec![0; 48 * 1]);
  4149. let raw_tx_buffer = raw::PacketBuffer::new(
  4150. vec![raw::PacketMetadata::EMPTY; packets],
  4151. vec![0; 48 * packets],
  4152. );
  4153. let raw_socket = raw::Socket::new(
  4154. IpVersion::Ipv4,
  4155. IpProtocol::Udp,
  4156. raw_rx_buffer,
  4157. raw_tx_buffer,
  4158. );
  4159. sockets.add(raw_socket);
  4160. let src_addr = Ipv4Address([127, 0, 0, 2]);
  4161. let dst_addr = Ipv4Address([127, 0, 0, 1]);
  4162. let udp_repr = UdpRepr {
  4163. src_port: 67,
  4164. dst_port: 68,
  4165. };
  4166. let mut bytes = vec![0xff; udp_repr.header_len() + UDP_PAYLOAD.len()];
  4167. let mut packet = UdpPacket::new_unchecked(&mut bytes[..]);
  4168. udp_repr.emit(
  4169. &mut packet,
  4170. &src_addr.into(),
  4171. &dst_addr.into(),
  4172. UDP_PAYLOAD.len(),
  4173. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4174. &ChecksumCapabilities::default(),
  4175. );
  4176. let ipv4_repr = Ipv4Repr {
  4177. src_addr,
  4178. dst_addr,
  4179. next_header: IpProtocol::Udp,
  4180. hop_limit: 64,
  4181. payload_len: udp_repr.header_len() + UDP_PAYLOAD.len(),
  4182. };
  4183. // Emit to frame
  4184. let mut bytes =
  4185. vec![0u8; ipv4_repr.buffer_len() + udp_repr.header_len() + UDP_PAYLOAD.len()];
  4186. let frame = {
  4187. ipv4_repr.emit(
  4188. &mut Ipv4Packet::new_unchecked(&mut bytes),
  4189. &ChecksumCapabilities::default(),
  4190. );
  4191. udp_repr.emit(
  4192. &mut UdpPacket::new_unchecked(&mut bytes[ipv4_repr.buffer_len()..]),
  4193. &src_addr.into(),
  4194. &dst_addr.into(),
  4195. UDP_PAYLOAD.len(),
  4196. |buf| buf.copy_from_slice(&UDP_PAYLOAD),
  4197. &ChecksumCapabilities::default(),
  4198. );
  4199. Ipv4Packet::new_unchecked(&bytes)
  4200. };
  4201. #[cfg(not(feature = "proto-ipv4-fragmentation"))]
  4202. assert_eq!(iface.inner.process_ipv4(&mut sockets, &frame, None), None);
  4203. #[cfg(feature = "proto-ipv4-fragmentation")]
  4204. assert_eq!(
  4205. iface.inner.process_ipv4(
  4206. &mut sockets,
  4207. &frame,
  4208. Some(&mut iface.fragments.ipv4_fragments)
  4209. ),
  4210. None
  4211. );
  4212. // Make sure the UDP socket can still receive in presence of a Raw socket that handles UDP
  4213. let socket = sockets.get_mut::<udp::Socket>(udp_socket_handle);
  4214. assert!(socket.can_recv());
  4215. assert_eq!(
  4216. socket.recv(),
  4217. Ok((&UDP_PAYLOAD[..], IpEndpoint::new(src_addr.into(), 67)))
  4218. );
  4219. }
  4220. }