|
@@ -90,9 +90,8 @@ human_readable (uintmax_t n, char *buf,
|
|
|
N is expressed in units of FROM_BLOCK_SIZE. FROM_BLOCK_SIZE must
|
|
|
be nonnegative.
|
|
|
|
|
|
- If OUTPUT_BLOCK_SIZE is positive, use units of OUTPUT_BLOCK_SIZE in
|
|
|
- the output number. OUTPUT_BLOCK_SIZE must be a multiple of
|
|
|
- FROM_BLOCK_SIZE or vice versa.
|
|
|
+ OUTPUT_BLOCK_SIZE must be nonzero. If it is positive, use units of
|
|
|
+ OUTPUT_BLOCK_SIZE in the output number.
|
|
|
|
|
|
Use INEXACT_STYLE to determine whether to take the ceiling or floor
|
|
|
of any result that cannot be expressed exactly.
|
|
@@ -118,6 +117,10 @@ human_readable_inexact (uintmax_t n, char *buf,
|
|
|
int base;
|
|
|
int to_block_size;
|
|
|
int tenths = 0;
|
|
|
+ int multiplier;
|
|
|
+ int divisor;
|
|
|
+ int r2;
|
|
|
+ int r10;
|
|
|
int power;
|
|
|
char *p;
|
|
|
|
|
@@ -148,57 +151,49 @@ human_readable_inexact (uintmax_t n, char *buf,
|
|
|
|
|
|
/* Adjust AMT out of FROM_BLOCK_SIZE units and into TO_BLOCK_SIZE units. */
|
|
|
|
|
|
- if (to_block_size <= from_block_size)
|
|
|
+ if (to_block_size <= from_block_size
|
|
|
+ ? (from_block_size % to_block_size != 0
|
|
|
+ || (multiplier = from_block_size / to_block_size,
|
|
|
+ (amt = n * multiplier) / multiplier != n))
|
|
|
+ : (from_block_size == 0
|
|
|
+ || to_block_size % from_block_size != 0
|
|
|
+ || (divisor = to_block_size / from_block_size,
|
|
|
+ r10 = (n % divisor) * 10,
|
|
|
+ r2 = (r10 % divisor) * 2,
|
|
|
+ amt = n / divisor,
|
|
|
+ tenths = r10 / divisor,
|
|
|
+ rounding = r2 < divisor ? 0 < r2 : 2 + (divisor < r2),
|
|
|
+ 0)))
|
|
|
{
|
|
|
- int multiplier = from_block_size / to_block_size;
|
|
|
- amt = n * multiplier;
|
|
|
+ /* Either the result cannot be computed easily using uintmax_t,
|
|
|
+ or from_block_size is zero. Fall back on floating point.
|
|
|
+ FIXME: This can yield answers that are slightly off. */
|
|
|
|
|
|
- if (amt / multiplier != n)
|
|
|
- {
|
|
|
- /* Overflow occurred during multiplication. We should use
|
|
|
- multiple precision arithmetic here, but we'll be lazy and
|
|
|
- resort to floating point. This can yield answers that
|
|
|
- are slightly off. In practice it is quite rare to
|
|
|
- overflow uintmax_t, so this is good enough for now. */
|
|
|
+ double damt = n * (from_block_size / (double) to_block_size);
|
|
|
|
|
|
- double damt = n * (double) multiplier;
|
|
|
+ if (! base)
|
|
|
+ sprintf (buf, "%.0f", damt);
|
|
|
+ else
|
|
|
+ {
|
|
|
+ double e = 1;
|
|
|
+ power = 0;
|
|
|
|
|
|
- if (! base)
|
|
|
- sprintf (buf, "%.0f", damt);
|
|
|
- else
|
|
|
+ do
|
|
|
{
|
|
|
- double e = 1;
|
|
|
- power = 0;
|
|
|
-
|
|
|
- do
|
|
|
- {
|
|
|
- e *= base;
|
|
|
- power++;
|
|
|
- }
|
|
|
- while (e * base <= damt && power < sizeof suffixes - 1);
|
|
|
-
|
|
|
- damt /= e;
|
|
|
-
|
|
|
- sprintf (buf, "%.1f%c", damt, suffixes[power]);
|
|
|
- if (4 < strlen (buf))
|
|
|
- sprintf (buf, "%.0f%c", damt, suffixes[power]);
|
|
|
+ e *= base;
|
|
|
+ power++;
|
|
|
}
|
|
|
+ while (e * base <= damt && power < sizeof suffixes - 1);
|
|
|
|
|
|
- return buf;
|
|
|
+ damt /= e;
|
|
|
+
|
|
|
+ sprintf (buf, "%.1f%c", damt, suffixes[power]);
|
|
|
+ if (4 < strlen (buf))
|
|
|
+ sprintf (buf, "%.0f%c", damt, suffixes[power]);
|
|
|
}
|
|
|
- }
|
|
|
- else if (from_block_size == 0)
|
|
|
- amt = 0;
|
|
|
- else
|
|
|
- {
|
|
|
- int divisor = to_block_size / from_block_size;
|
|
|
- int r10 = (n % divisor) * 10;
|
|
|
- int r2 = (r10 % divisor) * 2;
|
|
|
- amt = n / divisor;
|
|
|
- tenths = r10 / divisor;
|
|
|
- rounding = r2 < divisor ? 0 < r2 : 2 + (divisor < r2);
|
|
|
- }
|
|
|
|
|
|
+ return buf;
|
|
|
+ }
|
|
|
|
|
|
/* Use power of BASE notation if adjusted AMT is large enough. */
|
|
|
|