Browse Source

:new: 初始化内存池组

fslongjin 3 years ago
parent
commit
8e1a0c9a4b
5 changed files with 155 additions and 40 deletions
  1. 3 1
      .vscode/settings.json
  2. 14 15
      kernel/mm/mm.c
  3. 8 2
      kernel/mm/mm.h
  4. 89 7
      kernel/mm/slab.c
  5. 41 15
      kernel/mm/slab.h

+ 3 - 1
.vscode/settings.json

@@ -14,6 +14,8 @@
         "asm.h": "c",
         "memory.h": "c",
         "irq.h": "c",
-        "multiboot2.h": "c"
+        "multiboot2.h": "c",
+        "kprint.h": "c",
+        "8259a.h": "c"
     }
 }

+ 14 - 15
kernel/mm/mm.c

@@ -18,7 +18,7 @@ void mm_init()
     struct multiboot_mmap_entry_t *mb2_mem_info;
     int count;
     multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
-    
+
     for (int i = 0; i < count; ++i)
     {
         //可用的内存
@@ -68,7 +68,7 @@ void mm_init()
     memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
 
     // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
-    memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
+    memset(memory_management_struct.bmp, 0xffffffffffffffff, memory_management_struct.bmp_len);
 
     // 初始化内存页结构
     // 将页结构映射于bmp之后
@@ -184,18 +184,6 @@ void mm_init()
 
     global_CR3 = get_CR3();
 
-    /*
-    printk_color(INDIGO, BLACK, "cr3:\t%#018lx\n", cr3);
-    printk_color(INDIGO, BLACK, "*cr3:\t%#018lx\n", *(phys_2_virt(cr3)) & (~0xff));
-    printk_color(INDIGO, BLACK, "**cr3:\t%#018lx\n", *phys_2_virt(*(phys_2_virt(cr3)) & (~0xff)) & (~0xff));
-    */
-
-    /*
-    // 消除一致性页表映射,将页目录(PML4E)的前10项清空
-    for (int i = 0; i < 10; ++i)
-        *(phys_2_virt(global_CR3) + i) = 0UL;
-    */
-
     flush_tlb();
 
     kinfo("Memory management unit initialize complete!");
@@ -347,4 +335,15 @@ unsigned long page_clean(struct Page *p)
         ++p->zone->count_pages_free;
         --p->zone->total_pages_link;
     }
-}
+}
+
+/**
+ * @brief 释放连续number个内存页
+ *
+ * @param page 第一个要被释放的页面的结构体
+ * @param number 要释放的内存页数量 number<64
+ */
+void free_pages(struct Page *page, int number)
+{
+    // @todo: 释放连续number个内存页
+}

+ 8 - 2
kernel/mm/mm.h

@@ -30,7 +30,7 @@
 // 虚拟地址与物理地址转换
 #define virt_2_phys(addr) ((unsigned long)(addr)-PAGE_OFFSET)
 #define phys_2_virt(addr) ((unsigned long *)((unsigned long)(addr) + PAGE_OFFSET))
-
+// 获取对应的页结构体
 #define Virt_To_2M_Page(kaddr) (memory_management_struct.pages_struct + (virt_2_phys(kaddr) >> PAGE_2M_SHIFT))
 #define Phy_to_2M_Page(kaddr) (memory_management_struct.pages_struct + ((unsigned long)(kaddr) >> PAGE_2M_SHIFT))
 
@@ -219,7 +219,13 @@ struct Page *alloc_pages(unsigned int zone_select, int num, ul flags);
  */
 unsigned long page_clean(struct Page *page);
 
-
+/**
+ * @brief 释放连续number个内存页
+ *
+ * @param page 第一个要被释放的页面的结构体
+ * @param number 要释放的内存页数量 number<64
+ */
+void free_pages(struct Page *page, int number);
 
 /**
  * @brief 内存页表结构体

+ 89 - 7
kernel/mm/slab.c

@@ -294,22 +294,21 @@ ul slab_free(struct slab *slab_pool, void *addr, ul arg)
         // 有对应的析构函数,调用析构函数
         if (slab_pool->destructor != NULL)
             slab_pool->destructor((char *)slab_obj_ptr->vaddr + slab_pool->size * index, arg);
-        
+
         // 当前内存对象池的正在使用的内存对象为0,且内存池的空闲对象大于当前对象池的2倍,则销毁当前对象池,以减轻系统内存压力
-        if((slab_obj_ptr->count_using==0)&&((slab_pool->count_total_free>>1)>=slab_obj_ptr->count_free))
+        if ((slab_obj_ptr->count_using == 0) && ((slab_pool->count_total_free >> 1) >= slab_obj_ptr->count_free))
         {
             // 防止删除了slab_pool的cache_pool入口
-            if(slab_pool->cache_pool==slab_obj_ptr)
+            if (slab_pool->cache_pool == slab_obj_ptr)
                 slab_pool->cache_pool = container_of(list_next(&slab_obj_ptr->list), struct slab_obj, list);
-            
+
             list_del(&slab_obj_ptr->list);
             slab_pool->count_total_free -= slab_obj_ptr->count_free;
-            
+
             kfree(slab_obj_ptr->bmp);
             page_clean(slab_obj_ptr->page);
-            free_pages(slab_obj_ptr->page,1);
+            free_pages(slab_obj_ptr->page, 1);
             kfree(slab_obj_ptr);
-            
         }
 
         return 0;
@@ -319,6 +318,89 @@ ul slab_free(struct slab *slab_pool, void *addr, ul arg)
     return ENOT_IN_SLAB;
 }
 
+/**
+ * @brief 初始化内存池组
+ * 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
+ * @return ul
+ */
+ul slab_init()
+{
+    // 将slab的内存池空间放置在mms的后方
+    ul tmp_addr = memory_management_struct.end_of_struct;
+
+    for (int i = 0; i < 16; ++i)
+    {
+        // 将slab内存池对象的空间放置在mms的后面,并且预留4个unsigned long 的空间以防止内存越界
+        kmalloc_cache_group[i].cache_pool = (struct slab_obj *)memory_management_struct.end_of_struct;
+        memory_management_struct.end_of_struct += sizeof(struct slab_obj) + (sizeof(ul) << 2);
+
+        list_init(&(kmalloc_cache_group[i].cache_pool->list));
+
+        // 初始化内存池对象
+        kmalloc_cache_group[i].cache_pool->count_using = 0;
+        kmalloc_cache_group[i].cache_pool->count_free = PAGE_2M_SIZE / kmalloc_cache_group[i].size;
+        kmalloc_cache_group[i].cache_pool->bmp_len = (((kmalloc_cache_group[i].cache_pool->count_free + sizeof(ul) * 8 - 1) >> 6) << 3);
+        kmalloc_cache_group[i].cache_pool->bmp_count = kmalloc_cache_group[i].cache_pool->count_free;
+
+        // 在slab对象后方放置bmp
+        kmalloc_cache_group[i].cache_pool->bmp = (ul *)memory_management_struct.end_of_struct;
+
+        // bmp后方预留4个unsigned long的空间防止内存越界,且按照8byte进行对齐
+        memory_management_struct.end_of_struct += kmalloc_cache_group[i].cache_pool->bmp_len + ((sizeof(ul) << 2) & (~sizeof(ul) - 1));
+
+        memset(kmalloc_cache_group[i].cache_pool->bmp, 0, kmalloc_cache_group[i].cache_pool->bmp_len);
+
+        kmalloc_cache_group[i].count_total_using = 0;
+        kmalloc_cache_group[i].count_total_free = kmalloc_cache_group[i].cache_pool->count_free;
+        /*
+        memset(kmalloc_cache_size[i].cache_pool->color_map,0xff,kmalloc_cache_size[i].cache_pool->color_length);
+
+        for(j = 0;j < kmalloc_cache_size[i].cache_pool->color_count;j++)
+            *(kmalloc_cache_size[i].cache_pool->color_map + (j >> 6)) ^= 1UL << j % 64;
+
+        kmalloc_cache_size[i].total_free = kmalloc_cache_size[i].cache_pool->color_count;
+        kmalloc_cache_size[i].total_using = 0;
+        */
+    }
+
+    struct Page *page = NULL;
+
+    // 将上面初始化内存池组时,所占用的内存页进行初始化
+    ul tmp_page_mms_end = virt_2_phys(memory_management_struct.end_of_struct >> PAGE_2M_SHIFT);
+    for (int i = PAGE_2M_ALIGN(virt_2_phys(tmp_addr)); i < tmp_page_mms_end; ++i)
+    {
+        page = memory_management_struct.pages_struct + i;
+
+        // 下面注释掉的这部分工作貌似在page_init()里面已经做了
+        // 在mms的bmp中,置位对应的位
+        //*(memory_management_struct.bmp + ((page->addr_phys>>PAGE_2M_SHIFT)>>6)) |= 1UL<<((page->addr_phys >> PAGE_2M_SHIFT)%64);
+
+        //++(page->zone->count_pages_using);
+        //--(page->zone->count_pages_free);
+
+        page_init(page, PAGE_KERNEL_INIT | PAGE_KERNEL | PAGE_PGT_MAPPED);
+    }
+
+    printk_color(ORANGE, BLACK, "2.memory_management_struct.bmp:%#018lx\tzone_struct->count_pages_using:%d\tzone_struct->count_pages_free:%d\n", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
+
+    // 为slab内存池对象分配内存空间
+    ul *virt = NULL;
+    for (int i = 0; i < 16; ++i)
+    {
+        // 获取一个新的空页并添加到空页表,然后返回其虚拟地址
+        virt = (ul*)(PAGE_2M_ALIGN(memory_management_struct.end_of_struct+PAGE_2M_SIZE*i));
+        page = Virt_To_2M_Page(virt);
+
+        page_init(page, PAGE_PGT_MAPPED|PAGE_KERNEL|PAGE_KERNEL_INIT);
+
+        kmalloc_cache_group[i].cache_pool->page = page;
+        kmalloc_cache_group[i].cache_pool->vaddr = virt;
+    }
+    printk_color(ORANGE, BLACK, "3.memory_management_struct.bmp:%#018lx\tzone_struct->count_pages_using:%d\tzone_struct->count_pages_free:%d\n", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
+
+    return 0;
+}
+
 /**
  * @brief 通用内存分配函数
  *

+ 41 - 15
kernel/mm/slab.h

@@ -12,7 +12,6 @@
 #define ESLAB_NOTNULL 101
 #define ENOT_IN_SLAB 102
 
-
 struct slab_obj
 {
     struct List *list;
@@ -26,15 +25,15 @@ struct slab_obj
     void *vaddr;
 
     // 位图
-    ul bmp_len; // 位图的长度(字节)
-    ul bmp_count;   // 位图的有效位数
+    ul bmp_len;   // 位图的长度(字节)
+    ul bmp_count; // 位图的有效位数
     ul *bmp;
 };
 
 // slab内存池
 struct slab
 {
-    ul size;
+    ul size; // 单位:byte
     ul count_total_using;
     ul count_total_free;
     // 内存池对象
@@ -58,11 +57,11 @@ void *kmalloc(unsigned long size, unsigned long flags);
 
 /**
  * @brief 通用内存释放函数
- * 
+ *
  * @param address 要释放的内存地址
- * @return unsigned long 
+ * @return unsigned long
  */
-unsigned long kfree(void * address);
+unsigned long kfree(void *address);
 
 /**
  * @brief 创建一个内存池
@@ -79,26 +78,53 @@ struct slab *slab_create(ul size, void *(*constructor)(void *vaddr, ul arg), voi
  * @brief 销毁内存池对象
  * 只有当slab对象是空的时候才能销毁
  * @param slab_pool 要销毁的内存池对象
- * @return ul 
- * 
+ * @return ul
+ *
  */
-ul slab_destroy(struct slab * slab_pool);
+ul slab_destroy(struct slab *slab_pool);
 
 /**
  * @brief 分配SLAB内存池中的内存对象
- * 
+ *
  * @param slab_pool slab内存池
  * @param arg 传递给内存对象构造函数的参数
  * @return void* 内存空间的虚拟地址
  */
-void* slab_malloc(struct slab *slab_pool, ul arg);
+void *slab_malloc(struct slab *slab_pool, ul arg);
 
 /**
  * @brief 回收slab内存池中的对象
- * 
+ *
  * @param slab_pool 对应的内存池
  * @param addr 内存对象的虚拟地址
  * @param arg 传递给虚构函数的参数
- * @return ul 
+ * @return ul
+ */
+ul slab_free(struct slab *slab_pool, void *addr, ul arg);
+
+/**
+ * @brief 初始化内存池组
+ * 在初始化通用内存管理单元期间,尚无内存空间分配函数,需要我们手动为SLAB内存池指定存储空间
+ * @return ul
  */
-ul slab_free(struct slab* slab_pool, void* addr, ul arg);
+ul slab_init();
+
+struct slab kmalloc_cache_group[16] =
+    {
+        {32, 0, 0, NULL, NULL, NULL, NULL},
+        {64, 0, 0, NULL, NULL, NULL, NULL},
+        {128, 0, 0, NULL, NULL, NULL, NULL},
+        {256, 0, 0, NULL, NULL, NULL, NULL},
+        {512, 0, 0, NULL, NULL, NULL, NULL},
+        {1024, 0, 0, NULL, NULL, NULL, NULL}, // 1KB
+        {2048, 0, 0, NULL, NULL, NULL, NULL},
+        {4096, 0, 0, NULL, NULL, NULL, NULL}, // 4KB
+        {8192, 0, 0, NULL, NULL, NULL, NULL},
+        {16384, 0, 0, NULL, NULL, NULL, NULL},
+        {32768, 0, 0, NULL, NULL, NULL, NULL},
+        {65536, 0, 0, NULL, NULL, NULL, NULL},
+        {131072, 0, 0, NULL, NULL, NULL, NULL}, // 128KB
+        {262144, 0, 0, NULL, NULL, NULL, NULL},
+        {524288, 0, 0, NULL, NULL, NULL, NULL},
+        {1048576, 0, 0, NULL, NULL, NULL, NULL}, // 1MB
+};