process.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. #include "process.h"
  2. #include "../exception/gate.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../syscall/syscall.h"
  6. #include "../syscall/syscall_num.h"
  7. #include <mm/slab.h>
  8. #include <sched/sched.h>
  9. #include <filesystem/fat32/fat32.h>
  10. #include <common/stdio.h>
  11. extern void system_call(void);
  12. extern void kernel_thread_func(void);
  13. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  14. struct mm_struct initial_mm = {0};
  15. struct thread_struct initial_thread =
  16. {
  17. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  18. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  19. .fs = KERNEL_DS,
  20. .gs = KERNEL_DS,
  21. .cr2 = 0,
  22. .trap_num = 0,
  23. .err_code = 0};
  24. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  25. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  26. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  27. // 为每个核心初始化初始进程的tss
  28. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  29. /**
  30. * @brief 切换进程
  31. *
  32. * @param prev 上一个进程的pcb
  33. * @param next 将要切换到的进程的pcb
  34. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  35. * 这里切换fs和gs寄存器
  36. */
  37. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  38. {
  39. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  40. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  41. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  42. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  43. __asm__ __volatile__("movq %%fs, %0 \n\t"
  44. : "=a"(prev->thread->fs));
  45. __asm__ __volatile__("movq %%gs, %0 \n\t"
  46. : "=a"(prev->thread->gs));
  47. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  48. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  49. // wrmsr(0x175, next->thread->rbp);
  50. }
  51. /**
  52. * @brief 这是一个用户态的程序
  53. *
  54. */
  55. void user_level_function()
  56. {
  57. // kinfo("Program (user_level_function) is runing...");
  58. // kinfo("Try to enter syscall id 15...");
  59. // enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
  60. // enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
  61. // while(1);
  62. long ret = 0;
  63. // printk_color(RED,BLACK,"user_level_function task is running\n");
  64. /*
  65. // 测试sys put string
  66. char string[] = "User level process.\n";
  67. long err_code = 1;
  68. ul addr = (ul)string;
  69. __asm__ __volatile__(
  70. "movq %2, %%r8 \n\t"
  71. "int $0x80 \n\t"
  72. : "=a"(err_code)
  73. : "a"(SYS_PUT_STRING), "m"(addr)
  74. : "memory", "r8");
  75. */
  76. while (1)
  77. {
  78. // 测试sys_open
  79. char string[] = "333.txt";
  80. long err_code = 1;
  81. int zero = 0;
  82. uint64_t addr = (ul)string;
  83. __asm__ __volatile__(
  84. "movq %2, %%r8 \n\t"
  85. "movq %3, %%r9 \n\t"
  86. "movq %4, %%r10 \n\t"
  87. "movq %5, %%r11 \n\t"
  88. "movq %6, %%r12 \n\t"
  89. "movq %7, %%r13 \n\t"
  90. "movq %8, %%r14 \n\t"
  91. "movq %9, %%r15 \n\t"
  92. "int $0x80 \n\t"
  93. : "=a"(err_code)
  94. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  95. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  96. int fd_num = err_code;
  97. int count = 128;
  98. // while (count)
  99. //{
  100. uchar buf[128] = {0};
  101. // Test sys_read
  102. addr = (uint64_t)&buf;
  103. __asm__ __volatile__(
  104. "movq %2, %%r8 \n\t"
  105. "movq %3, %%r9 \n\t"
  106. "movq %4, %%r10 \n\t"
  107. "movq %5, %%r11 \n\t"
  108. "movq %6, %%r12 \n\t"
  109. "movq %7, %%r13 \n\t"
  110. "movq %8, %%r14 \n\t"
  111. "movq %9, %%r15 \n\t"
  112. "int $0x80 \n\t"
  113. : "=a"(err_code)
  114. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  115. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  116. count = err_code;
  117. // 将读取到的数据打印出来
  118. addr = (ul)buf;
  119. __asm__ __volatile__(
  120. "movq %2, %%r8 \n\t"
  121. "int $0x80 \n\t"
  122. : "=a"(err_code)
  123. : "a"(SYS_PUT_STRING), "m"(addr)
  124. : "memory", "r8");
  125. // SYS_WRITE
  126. char test1[] = "GGGGHHHHHHHHh112343";
  127. addr = (uint64_t)&test1;
  128. count = 19;
  129. __asm__ __volatile__(
  130. "movq %2, %%r8 \n\t"
  131. "movq %3, %%r9 \n\t"
  132. "movq %4, %%r10 \n\t"
  133. "movq %5, %%r11 \n\t"
  134. "movq %6, %%r12 \n\t"
  135. "movq %7, %%r13 \n\t"
  136. "movq %8, %%r14 \n\t"
  137. "movq %9, %%r15 \n\t"
  138. "int $0x80 \n\t"
  139. : "=a"(err_code)
  140. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  141. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  142. addr = 1;
  143. count = SEEK_SET;
  144. fd_num = 0;
  145. // Test lseek
  146. __asm__ __volatile__(
  147. "movq %2, %%r8 \n\t"
  148. "movq %3, %%r9 \n\t"
  149. "movq %4, %%r10 \n\t"
  150. "movq %5, %%r11 \n\t"
  151. "movq %6, %%r12 \n\t"
  152. "movq %7, %%r13 \n\t"
  153. "movq %8, %%r14 \n\t"
  154. "movq %9, %%r15 \n\t"
  155. "int $0x80 \n\t"
  156. : "=a"(err_code)
  157. : "a"(SYS_LSEEK), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  158. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  159. // SYS_WRITE
  160. char test2[] = "K123456789K";
  161. addr = (uint64_t)&test2;
  162. count = 11;
  163. __asm__ __volatile__(
  164. "movq %2, %%r8 \n\t"
  165. "movq %3, %%r9 \n\t"
  166. "movq %4, %%r10 \n\t"
  167. "movq %5, %%r11 \n\t"
  168. "movq %6, %%r12 \n\t"
  169. "movq %7, %%r13 \n\t"
  170. "movq %8, %%r14 \n\t"
  171. "movq %9, %%r15 \n\t"
  172. "int $0x80 \n\t"
  173. : "=a"(err_code)
  174. : "a"(SYS_WRITE), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  175. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  176. // Test sys_close
  177. __asm__ __volatile__(
  178. "movq %2, %%r8 \n\t"
  179. "movq %3, %%r9 \n\t"
  180. "movq %4, %%r10 \n\t"
  181. "movq %5, %%r11 \n\t"
  182. "movq %6, %%r12 \n\t"
  183. "movq %7, %%r13 \n\t"
  184. "movq %8, %%r14 \n\t"
  185. "movq %9, %%r15 \n\t"
  186. "int $0x80 \n\t"
  187. : "=a"(err_code)
  188. : "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  189. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  190. addr = (ul)string;
  191. __asm__ __volatile__(
  192. "movq %2, %%r8 \n\t"
  193. "movq %3, %%r9 \n\t"
  194. "movq %4, %%r10 \n\t"
  195. "movq %5, %%r11 \n\t"
  196. "movq %6, %%r12 \n\t"
  197. "movq %7, %%r13 \n\t"
  198. "movq %8, %%r14 \n\t"
  199. "movq %9, %%r15 \n\t"
  200. "int $0x80 \n\t"
  201. : "=a"(err_code)
  202. : "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  203. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  204. fd_num = err_code;
  205. count = 128;
  206. // Test sys_read
  207. addr = (uint64_t)&buf;
  208. __asm__ __volatile__(
  209. "movq %2, %%r8 \n\t"
  210. "movq %3, %%r9 \n\t"
  211. "movq %4, %%r10 \n\t"
  212. "movq %5, %%r11 \n\t"
  213. "movq %6, %%r12 \n\t"
  214. "movq %7, %%r13 \n\t"
  215. "movq %8, %%r14 \n\t"
  216. "movq %9, %%r15 \n\t"
  217. "int $0x80 \n\t"
  218. : "=a"(err_code)
  219. : "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
  220. : "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
  221. count = err_code;
  222. // 将读取到的数据打印出来
  223. addr = (ul)buf;
  224. __asm__ __volatile__(
  225. "movq %2, %%r8 \n\t"
  226. "int $0x80 \n\t"
  227. : "=a"(err_code)
  228. : "a"(SYS_PUT_STRING), "m"(addr)
  229. : "memory", "r8");
  230. // Test Sys
  231. //}
  232. while (1)
  233. pause();
  234. }
  235. while (1)
  236. pause();
  237. }
  238. /**
  239. * @brief 使当前进程去执行新的代码
  240. *
  241. * @param regs 当前进程的寄存器
  242. * @return ul 错误码
  243. */
  244. ul do_execve(struct pt_regs *regs)
  245. {
  246. // 选择这两个寄存器是对应了sysexit指令的需要
  247. regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
  248. regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
  249. regs->cs = USER_CS | 3;
  250. regs->ds = USER_DS | 3;
  251. regs->ss = USER_DS | 0x3;
  252. regs->rflags = 0x200246;
  253. regs->rax = 1;
  254. regs->es = 0;
  255. // kdebug("do_execve is running...");
  256. // 映射起始页面
  257. // mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
  258. uint64_t addr = 0x800000UL;
  259. /*
  260. unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff));
  261. unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0);
  262. set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
  263. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
  264. virtual = kmalloc(PAGE_4K_SIZE, 0);
  265. set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
  266. tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
  267. struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
  268. set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
  269. flush_tlb();
  270. */
  271. mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
  272. if (!(current_pcb->flags & PF_KTHREAD))
  273. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  274. // 将程序代码拷贝到对应的内存中
  275. memcpy((void *)0x800000, user_level_function, 1024);
  276. // kdebug("program copied!");
  277. return 0;
  278. }
  279. /**
  280. * @brief 内核init进程
  281. *
  282. * @param arg
  283. * @return ul 参数
  284. */
  285. ul initial_kernel_thread(ul arg)
  286. {
  287. // kinfo("initial proc running...\targ:%#018lx", arg);
  288. fat32_init();
  289. struct pt_regs *regs;
  290. current_pcb->thread->rip = (ul)ret_from_system_call;
  291. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  292. // current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
  293. // memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
  294. regs = (struct pt_regs *)current_pcb->thread->rsp;
  295. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  296. current_pcb->flags = 0;
  297. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  298. __asm__ __volatile__("movq %1, %%rsp \n\t"
  299. "pushq %2 \n\t"
  300. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  301. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
  302. : "memory");
  303. return 1;
  304. }
  305. /**
  306. * @brief 进程退出时执行的函数
  307. *
  308. * @param code 返回码
  309. * @return ul
  310. */
  311. ul process_thread_do_exit(ul code)
  312. {
  313. kinfo("thread_exiting..., code is %#018lx.", code);
  314. while (1)
  315. ;
  316. }
  317. /**
  318. * @brief 初始化内核进程
  319. *
  320. * @param fn 目标程序的地址
  321. * @param arg 向目标程序传入的参数
  322. * @param flags
  323. * @return int
  324. */
  325. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  326. {
  327. struct pt_regs regs;
  328. memset(&regs, 0, sizeof(regs));
  329. // 在rbx寄存器中保存进程的入口地址
  330. regs.rbx = (ul)fn;
  331. // 在rdx寄存器中保存传入的参数
  332. regs.rdx = (ul)arg;
  333. regs.ds = KERNEL_DS;
  334. regs.es = KERNEL_DS;
  335. regs.cs = KERNEL_CS;
  336. regs.ss = KERNEL_DS;
  337. // 置位中断使能标志位
  338. regs.rflags = (1 << 9);
  339. // rip寄存器指向内核线程的引导程序
  340. regs.rip = (ul)kernel_thread_func;
  341. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  342. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  343. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  344. return do_fork(&regs, flags, 0, 0);
  345. }
  346. /**
  347. * @brief 初始化进程模块
  348. * ☆前置条件:已完成系统调用模块的初始化
  349. */
  350. void process_init()
  351. {
  352. kinfo("Initializing process...");
  353. initial_mm.pgd = (pml4t_t *)global_CR3;
  354. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  355. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  356. initial_mm.data_addr_start = (ul)&_data;
  357. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  358. initial_mm.rodata_addr_start = (ul)&_rodata;
  359. initial_mm.rodata_addr_end = (ul)&_erodata;
  360. initial_mm.brk_start = 0;
  361. initial_mm.brk_end = memory_management_struct.kernel_end;
  362. initial_mm.stack_start = _stack_start;
  363. // 初始化进程和tss
  364. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  365. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  366. /*
  367. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  368. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  369. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  370. */
  371. // 初始化进程的循环链表
  372. list_init(&initial_proc_union.pcb.list);
  373. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
  374. initial_proc_union.pcb.state = PROC_RUNNING;
  375. initial_proc_union.pcb.preempt_count = 0;
  376. // 获取新的进程的pcb
  377. // struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
  378. // kdebug("Ready to switch...");
  379. // 切换到新的内核线程
  380. // switch_proc(current_pcb, p);
  381. }
  382. /**
  383. * @brief fork当前进程
  384. *
  385. * @param regs 新的寄存器值
  386. * @param clone_flags 克隆标志
  387. * @param stack_start 堆栈开始地址
  388. * @param stack_size 堆栈大小
  389. * @return unsigned long
  390. */
  391. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  392. {
  393. struct process_control_block *tsk = NULL;
  394. // kdebug("222\tregs.rip = %#018lx", regs->rip);
  395. // 获取一个物理页并在这个物理页内初始化pcb
  396. struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
  397. tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
  398. memset(tsk, 0, sizeof(struct process_control_block));
  399. // 将当前进程的pcb复制到新的pcb内
  400. *tsk = *current_pcb;
  401. // kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
  402. // 将进程加入循环链表
  403. list_init(&tsk->list);
  404. // list_add(&initial_proc_union.pcb.list, &tsk->list);
  405. tsk->priority = 2;
  406. tsk->preempt_count = 0;
  407. ++(tsk->pid);
  408. tsk->cpu_id = proc_current_cpu_id;
  409. tsk->state = PROC_UNINTERRUPTIBLE;
  410. list_init(&tsk->list);
  411. list_add(&initial_proc_union.pcb.list, &tsk->list);
  412. // 将线程结构体放置在pcb的后面
  413. struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
  414. memset(thd, 0, sizeof(struct thread_struct));
  415. tsk->thread = thd;
  416. // kdebug("333\tregs.rip = %#018lx", regs->rip);
  417. // 将寄存器信息存储到进程的内核栈空间的顶部
  418. memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
  419. // kdebug("regs.rip = %#018lx", regs->rip);
  420. // 设置进程的内核栈
  421. thd->rbp = (ul)tsk + STACK_SIZE;
  422. thd->rip = regs->rip;
  423. thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
  424. thd->fs = KERNEL_DS;
  425. thd->gs = KERNEL_DS;
  426. // kdebug("do_fork() thd->rsp=%#018lx", thd->rsp);
  427. // 若进程不是内核层的进程,则跳转到ret from system call
  428. if (!(tsk->flags & PF_KTHREAD))
  429. thd->rip = regs->rip = (ul)ret_from_system_call;
  430. else
  431. kdebug("is kernel proc.");
  432. tsk->state = PROC_RUNNING;
  433. sched_cfs_enqueue(tsk);
  434. return 0;
  435. }