process.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165
  1. #include "process.h"
  2. #include <common/printk.h>
  3. #include <common/kprint.h>
  4. #include <common/stdio.h>
  5. #include <common/string.h>
  6. #include <common/compiler.h>
  7. #include <common/libELF/elf.h>
  8. #include <common/time.h>
  9. #include <common/sys/wait.h>
  10. #include <driver/video/video.h>
  11. #include <driver/usb/usb.h>
  12. #include <exception/gate.h>
  13. #include <filesystem/fat32/fat32.h>
  14. #include <mm/slab.h>
  15. #include <common/spinlock.h>
  16. #include <syscall/syscall.h>
  17. #include <syscall/syscall_num.h>
  18. #include <sched/sched.h>
  19. #include <common/unistd.h>
  20. #include <debug/traceback/traceback.h>
  21. #include <driver/disk/ahci/ahci.h>
  22. #include <ktest/ktest.h>
  23. #include <mm/mmio.h>
  24. #include <common/lz4.h>
  25. // #pragma GCC push_options
  26. // #pragma GCC optimize("O0")
  27. spinlock_t process_global_pid_write_lock; // 增加pid的写锁
  28. long process_global_pid = 1; // 系统中最大的pid
  29. extern void system_call(void);
  30. extern void kernel_thread_func(void);
  31. ul _stack_start; // initial proc的栈基地址(虚拟地址)
  32. extern struct mm_struct initial_mm;
  33. struct thread_struct initial_thread =
  34. {
  35. .rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  36. .rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
  37. .fs = KERNEL_DS,
  38. .gs = KERNEL_DS,
  39. .cr2 = 0,
  40. .trap_num = 0,
  41. .err_code = 0};
  42. // 初始化 初始进程的union ,并将其链接到.data.init_proc段内
  43. union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
  44. struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
  45. // 为每个核心初始化初始进程的tss
  46. struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
  47. /**
  48. * @brief 拷贝当前进程的标志位
  49. *
  50. * @param clone_flags 克隆标志位
  51. * @param pcb 新的进程的pcb
  52. * @return uint64_t
  53. */
  54. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb);
  55. /**
  56. * @brief 拷贝当前进程的文件描述符等信息
  57. *
  58. * @param clone_flags 克隆标志位
  59. * @param pcb 新的进程的pcb
  60. * @return uint64_t
  61. */
  62. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb);
  63. /**
  64. * @brief 回收进程的所有文件描述符
  65. *
  66. * @param pcb 要被回收的进程的pcb
  67. * @return uint64_t
  68. */
  69. uint64_t process_exit_files(struct process_control_block *pcb);
  70. /**
  71. * @brief 拷贝当前进程的内存空间分布结构体信息
  72. *
  73. * @param clone_flags 克隆标志位
  74. * @param pcb 新的进程的pcb
  75. * @return uint64_t
  76. */
  77. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb);
  78. /**
  79. * @brief 释放进程的页表
  80. *
  81. * @param pcb 要被释放页表的进程
  82. * @return uint64_t
  83. */
  84. uint64_t process_exit_mm(struct process_control_block *pcb);
  85. /**
  86. * @brief 拷贝当前进程的线程结构体
  87. *
  88. * @param clone_flags 克隆标志位
  89. * @param pcb 新的进程的pcb
  90. * @return uint64_t
  91. */
  92. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs);
  93. void process_exit_thread(struct process_control_block *pcb);
  94. /**
  95. * @brief 切换进程
  96. *
  97. * @param prev 上一个进程的pcb
  98. * @param next 将要切换到的进程的pcb
  99. * 由于程序在进入内核的时候已经保存了寄存器,因此这里不需要保存寄存器。
  100. * 这里切换fs和gs寄存器
  101. */
  102. #pragma GCC push_options
  103. #pragma GCC optimize("O0")
  104. void __switch_to(struct process_control_block *prev, struct process_control_block *next)
  105. {
  106. initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
  107. // kdebug("next_rsp = %#018lx ", next->thread->rsp);
  108. // set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
  109. // initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
  110. __asm__ __volatile__("movq %%fs, %0 \n\t"
  111. : "=a"(prev->thread->fs));
  112. __asm__ __volatile__("movq %%gs, %0 \n\t"
  113. : "=a"(prev->thread->gs));
  114. __asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
  115. __asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
  116. }
  117. #pragma GCC pop_options
  118. /**
  119. * @brief 打开要执行的程序文件
  120. *
  121. * @param path
  122. * @return struct vfs_file_t*
  123. */
  124. struct vfs_file_t *process_open_exec_file(char *path)
  125. {
  126. struct vfs_dir_entry_t *dentry = NULL;
  127. struct vfs_file_t *filp = NULL;
  128. dentry = vfs_path_walk(path, 0);
  129. if (dentry == NULL)
  130. return (void *)-ENOENT;
  131. if (dentry->dir_inode->attribute == VFS_ATTR_DIR)
  132. return (void *)-ENOTDIR;
  133. filp = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  134. if (filp == NULL)
  135. return (void *)-ENOMEM;
  136. filp->position = 0;
  137. filp->mode = 0;
  138. filp->dEntry = dentry;
  139. filp->mode = ATTR_READ_ONLY;
  140. filp->file_ops = dentry->dir_inode->file_ops;
  141. return filp;
  142. }
  143. /**
  144. * @brief 加载elf格式的程序文件到内存中,并设置regs
  145. *
  146. * @param regs 寄存器
  147. * @param path 文件路径
  148. * @return int
  149. */
  150. static int process_load_elf_file(struct pt_regs *regs, char *path)
  151. {
  152. int retval = 0;
  153. struct vfs_file_t *filp = process_open_exec_file(path);
  154. if ((long)filp <= 0 && (long)filp >= -255)
  155. {
  156. // kdebug("(long)filp=%ld", (long)filp);
  157. return (unsigned long)filp;
  158. }
  159. void *buf = kmalloc(PAGE_4K_SIZE, 0);
  160. memset(buf, 0, PAGE_4K_SIZE);
  161. uint64_t pos = 0;
  162. pos = filp->file_ops->lseek(filp, 0, SEEK_SET);
  163. retval = filp->file_ops->read(filp, (char *)buf, sizeof(Elf64_Ehdr), &pos);
  164. retval = 0;
  165. if (!elf_check(buf))
  166. {
  167. kerror("Not an ELF file: %s", path);
  168. retval = -ENOTSUP;
  169. goto load_elf_failed;
  170. }
  171. #if ARCH(X86_64)
  172. // 暂时只支持64位的文件
  173. if (((Elf32_Ehdr *)buf)->e_ident[EI_CLASS] != ELFCLASS64)
  174. {
  175. kdebug("((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]=%d", ((Elf32_Ehdr *)buf)->e_ident[EI_CLASS]);
  176. retval = -EUNSUPPORTED;
  177. goto load_elf_failed;
  178. }
  179. Elf64_Ehdr ehdr = *(Elf64_Ehdr *)buf;
  180. // 暂时只支持AMD64架构
  181. if (ehdr.e_machine != EM_AMD64)
  182. {
  183. kerror("e_machine=%d", ehdr.e_machine);
  184. retval = -EUNSUPPORTED;
  185. goto load_elf_failed;
  186. }
  187. #else
  188. #error Unsupported architecture!
  189. #endif
  190. if (ehdr.e_type != ET_EXEC)
  191. {
  192. kerror("Not executable file! filename=%s\tehdr->e_type=%d", path, ehdr.e_type);
  193. retval = -EUNSUPPORTED;
  194. goto load_elf_failed;
  195. }
  196. // kdebug("filename=%s:\te_entry=%#018lx", path, ehdr.e_entry);
  197. regs->rip = ehdr.e_entry;
  198. current_pcb->mm->code_addr_start = ehdr.e_entry;
  199. // kdebug("ehdr.e_phoff=%#018lx\t ehdr.e_phentsize=%d, ehdr.e_phnum=%d", ehdr.e_phoff, ehdr.e_phentsize, ehdr.e_phnum);
  200. // 将指针移动到program header处
  201. pos = ehdr.e_phoff;
  202. // 读取所有的phdr
  203. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  204. filp->file_ops->read(filp, (char *)buf, (uint64_t)ehdr.e_phentsize * (uint64_t)ehdr.e_phnum, &pos);
  205. if ((unsigned long)filp <= 0)
  206. {
  207. kdebug("(unsigned long)filp=%d", (long)filp);
  208. retval = -ENOEXEC;
  209. goto load_elf_failed;
  210. }
  211. Elf64_Phdr *phdr = buf;
  212. // 将程序加载到内存中
  213. for (int i = 0; i < ehdr.e_phnum; ++i, ++phdr)
  214. {
  215. // kdebug("phdr[%d] phdr->p_offset=%#018lx phdr->p_vaddr=%#018lx phdr->p_memsz=%ld phdr->p_filesz=%ld phdr->p_type=%d", i, phdr->p_offset, phdr->p_vaddr, phdr->p_memsz, phdr->p_filesz, phdr->p_type);
  216. // 不是可加载的段
  217. if (phdr->p_type != PT_LOAD)
  218. continue;
  219. int64_t remain_mem_size = phdr->p_memsz;
  220. int64_t remain_file_size = phdr->p_filesz;
  221. pos = phdr->p_offset;
  222. uint64_t virt_base = phdr->p_vaddr;
  223. while (remain_mem_size > 0)
  224. {
  225. // kdebug("loading...");
  226. int64_t map_size = 0;
  227. if (remain_mem_size > PAGE_2M_SIZE / 2)
  228. {
  229. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  230. struct vm_area_struct *vma = NULL;
  231. int ret = mm_create_vma(current_pcb->mm, virt_base, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  232. // 防止内存泄露
  233. if (ret == -EEXIST)
  234. free_pages(Phy_to_2M_Page(pa), 1);
  235. else
  236. mm_map_vma(vma, pa);
  237. memset((void *)virt_base, 0, PAGE_2M_SIZE);
  238. map_size = PAGE_2M_SIZE;
  239. }
  240. else
  241. {
  242. // todo: 使用4K、8K、32K大小内存块混合进行分配,提高空间利用率(减少了bmp的大小)
  243. map_size = ALIGN(remain_mem_size, PAGE_4K_SIZE);
  244. // 循环分配4K大小内存块
  245. for (uint64_t off = 0; off < map_size; off += PAGE_4K_SIZE)
  246. {
  247. uint64_t paddr = virt_2_phys((uint64_t)kmalloc(PAGE_4K_SIZE, 0));
  248. struct vm_area_struct *vma = NULL;
  249. int val = mm_create_vma(current_pcb->mm, virt_base + off, PAGE_4K_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  250. if (val == -EEXIST)
  251. kfree(phys_2_virt(paddr));
  252. else
  253. mm_map_vma(vma, paddr);
  254. memset((void *)(virt_base + off), 0, PAGE_4K_SIZE);
  255. }
  256. }
  257. pos = filp->file_ops->lseek(filp, pos, SEEK_SET);
  258. int64_t val = 0;
  259. if (remain_file_size != 0)
  260. {
  261. int64_t to_trans = (remain_file_size > PAGE_2M_SIZE) ? PAGE_2M_SIZE : remain_file_size;
  262. val = filp->file_ops->read(filp, (char *)virt_base, to_trans, &pos);
  263. }
  264. if (val < 0)
  265. goto load_elf_failed;
  266. remain_mem_size -= map_size;
  267. remain_file_size -= val;
  268. virt_base += map_size;
  269. }
  270. }
  271. // 分配2MB的栈内存空间
  272. regs->rsp = current_pcb->mm->stack_start;
  273. regs->rbp = current_pcb->mm->stack_start;
  274. {
  275. struct vm_area_struct *vma = NULL;
  276. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  277. int val = mm_create_vma(current_pcb->mm, current_pcb->mm->stack_start - PAGE_2M_SIZE, PAGE_2M_SIZE, VM_USER | VM_ACCESS_FLAGS, NULL, &vma);
  278. if (val == -EEXIST)
  279. free_pages(Phy_to_2M_Page(pa), 1);
  280. else
  281. mm_map_vma(vma, pa);
  282. }
  283. // 清空栈空间
  284. memset((void *)(current_pcb->mm->stack_start - PAGE_2M_SIZE), 0, PAGE_2M_SIZE);
  285. load_elf_failed:;
  286. if (buf != NULL)
  287. kfree(buf);
  288. return retval;
  289. }
  290. /**
  291. * @brief 使当前进程去执行新的代码
  292. *
  293. * @param regs 当前进程的寄存器
  294. * @param path 可执行程序的路径
  295. * @param argv 参数列表
  296. * @param envp 环境变量
  297. * @return ul 错误码
  298. */
  299. #pragma GCC push_options
  300. #pragma GCC optimize("O0")
  301. ul do_execve(struct pt_regs *regs, char *path, char *argv[], char *envp[])
  302. {
  303. // kdebug("do_execve is running...");
  304. // 当前进程正在与父进程共享地址空间,需要创建
  305. // 独立的地址空间才能使新程序正常运行
  306. if (current_pcb->flags & PF_VFORK)
  307. {
  308. kdebug("proc:%d creating new mem space", current_pcb->pid);
  309. // 分配新的内存空间分布结构体
  310. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  311. memset(new_mms, 0, sizeof(struct mm_struct));
  312. current_pcb->mm = new_mms;
  313. // 分配顶层页表, 并设置顶层页表的物理地址
  314. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  315. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  316. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  317. // 拷贝内核空间的页表指针
  318. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]) + 256, PAGE_4K_SIZE / 2);
  319. }
  320. // 设置用户栈和用户堆的基地址
  321. unsigned long stack_start_addr = 0x6ffff0a00000UL;
  322. const uint64_t brk_start_addr = 0x700000000000UL;
  323. process_switch_mm(current_pcb);
  324. // 为用户态程序设置地址边界
  325. if (!(current_pcb->flags & PF_KTHREAD))
  326. current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
  327. current_pcb->mm->code_addr_end = 0;
  328. current_pcb->mm->data_addr_start = 0;
  329. current_pcb->mm->data_addr_end = 0;
  330. current_pcb->mm->rodata_addr_start = 0;
  331. current_pcb->mm->rodata_addr_end = 0;
  332. current_pcb->mm->bss_start = 0;
  333. current_pcb->mm->bss_end = 0;
  334. current_pcb->mm->brk_start = brk_start_addr;
  335. current_pcb->mm->brk_end = brk_start_addr;
  336. current_pcb->mm->stack_start = stack_start_addr;
  337. // 关闭之前的文件描述符
  338. process_exit_files(current_pcb);
  339. // 清除进程的vfork标志位
  340. current_pcb->flags &= ~PF_VFORK;
  341. // 加载elf格式的可执行文件
  342. int tmp = process_load_elf_file(regs, path);
  343. if (tmp < 0)
  344. goto exec_failed;
  345. // 拷贝参数列表
  346. if (argv != NULL)
  347. {
  348. int argc = 0;
  349. // 目标程序的argv基地址指针,最大8个参数
  350. char **dst_argv = (char **)(stack_start_addr - (sizeof(char **) << 3));
  351. uint64_t str_addr = (uint64_t)dst_argv;
  352. for (argc = 0; argc < 8 && argv[argc] != NULL; ++argc)
  353. {
  354. if (*argv[argc] == NULL)
  355. break;
  356. // 测量参数的长度(最大1023)
  357. int argv_len = strnlen_user(argv[argc], 1023) + 1;
  358. strncpy((char *)(str_addr - argv_len), argv[argc], argv_len - 1);
  359. str_addr -= argv_len;
  360. dst_argv[argc] = (char *)str_addr;
  361. // 字符串加上结尾字符
  362. ((char *)str_addr)[argv_len] = '\0';
  363. }
  364. // 重新设定栈基址,并预留空间防止越界
  365. stack_start_addr = str_addr - 8;
  366. current_pcb->mm->stack_start = stack_start_addr;
  367. regs->rsp = regs->rbp = stack_start_addr;
  368. // 传递参数
  369. regs->rdi = argc;
  370. regs->rsi = (uint64_t)dst_argv;
  371. }
  372. // kdebug("execve ok");
  373. regs->cs = USER_CS | 3;
  374. regs->ds = USER_DS | 3;
  375. regs->ss = USER_DS | 0x3;
  376. regs->rflags = 0x200246;
  377. regs->rax = 1;
  378. regs->es = 0;
  379. return 0;
  380. exec_failed:;
  381. process_do_exit(tmp);
  382. }
  383. #pragma GCC pop_options
  384. /**
  385. * @brief 内核init进程
  386. *
  387. * @param arg
  388. * @return ul 参数
  389. */
  390. #pragma GCC push_options
  391. #pragma GCC optimize("O0")
  392. ul initial_kernel_thread(ul arg)
  393. {
  394. // kinfo("initial proc running...\targ:%#018lx", arg);
  395. ahci_init();
  396. fat32_init();
  397. // 使用单独的内核线程来初始化usb驱动程序
  398. int usb_pid = kernel_thread(usb_init, 0, 0);
  399. kinfo("LZ4 lib Version=%s", LZ4_versionString());
  400. // 对一些组件进行单元测试
  401. uint64_t tpid[] = {
  402. ktest_start(ktest_test_bitree, 0),
  403. ktest_start(ktest_test_kfifo, 0),
  404. ktest_start(ktest_test_mutex, 0),
  405. usb_pid,
  406. };
  407. kinfo("Waiting test thread exit...");
  408. // 等待测试进程退出
  409. for (int i = 0; i < sizeof(tpid) / sizeof(uint64_t); ++i)
  410. waitpid(tpid[i], NULL, NULL);
  411. kinfo("All test done.");
  412. // 准备切换到用户态
  413. struct pt_regs *regs;
  414. // 若在后面这段代码中触发中断,return时会导致段选择子错误,从而触发#GP,因此这里需要cli
  415. cli();
  416. current_pcb->thread->rip = (ul)ret_from_system_call;
  417. current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
  418. current_pcb->thread->fs = USER_DS | 0x3;
  419. barrier();
  420. current_pcb->thread->gs = USER_DS | 0x3;
  421. // 主动放弃内核线程身份
  422. current_pcb->flags &= (~PF_KTHREAD);
  423. kdebug("in initial_kernel_thread: flags=%ld", current_pcb->flags);
  424. regs = (struct pt_regs *)current_pcb->thread->rsp;
  425. // kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
  426. current_pcb->flags = 0;
  427. // 将返回用户层的代码压入堆栈,向rdx传入regs的地址,然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
  428. // 加载用户态程序:shell.elf
  429. char init_path[] = "/shell.elf";
  430. uint64_t addr = (uint64_t)&init_path;
  431. __asm__ __volatile__("movq %1, %%rsp \n\t"
  432. "pushq %2 \n\t"
  433. "jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
  434. "m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip), "S"("/shell.elf"), "c"(NULL), "d"(NULL)
  435. : "memory");
  436. return 1;
  437. }
  438. #pragma GCC pop_options
  439. /**
  440. * @brief 当子进程退出后向父进程发送通知
  441. *
  442. */
  443. void process_exit_notify()
  444. {
  445. wait_queue_wakeup(&current_pcb->parent_pcb->wait_child_proc_exit, PROC_INTERRUPTIBLE);
  446. }
  447. /**
  448. * @brief 进程退出时执行的函数
  449. *
  450. * @param code 返回码
  451. * @return ul
  452. */
  453. ul process_do_exit(ul code)
  454. {
  455. // kinfo("process exiting..., code is %ld.", (long)code);
  456. cli();
  457. struct process_control_block *pcb = current_pcb;
  458. // 进程退出时释放资源
  459. process_exit_files(pcb);
  460. process_exit_thread(pcb);
  461. // todo: 可否在这里释放内存结构体?(在判断共享页引用问题之后)
  462. pcb->state = PROC_ZOMBIE;
  463. pcb->exit_code = code;
  464. sti();
  465. process_exit_notify();
  466. sched();
  467. while (1)
  468. pause();
  469. }
  470. /**
  471. * @brief 初始化内核进程
  472. *
  473. * @param fn 目标程序的地址
  474. * @param arg 向目标程序传入的参数
  475. * @param flags
  476. * @return int
  477. */
  478. int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
  479. {
  480. struct pt_regs regs;
  481. barrier();
  482. memset(&regs, 0, sizeof(regs));
  483. barrier();
  484. // 在rbx寄存器中保存进程的入口地址
  485. regs.rbx = (ul)fn;
  486. // 在rdx寄存器中保存传入的参数
  487. regs.rdx = (ul)arg;
  488. barrier();
  489. regs.ds = KERNEL_DS;
  490. barrier();
  491. regs.es = KERNEL_DS;
  492. barrier();
  493. regs.cs = KERNEL_CS;
  494. barrier();
  495. regs.ss = KERNEL_DS;
  496. barrier();
  497. // 置位中断使能标志位
  498. regs.rflags = (1 << 9);
  499. barrier();
  500. // rip寄存器指向内核线程的引导程序
  501. regs.rip = (ul)kernel_thread_func;
  502. barrier();
  503. // kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
  504. // kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
  505. // kdebug("1111\tregs.rip = %#018lx", regs.rip);
  506. return do_fork(&regs, flags | CLONE_VM, 0, 0);
  507. }
  508. /**
  509. * @brief 初始化进程模块
  510. * ☆前置条件:已完成系统调用模块的初始化
  511. */
  512. void process_init()
  513. {
  514. kinfo("Initializing process...");
  515. initial_mm.pgd = (pml4t_t *)get_CR3();
  516. initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
  517. initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
  518. initial_mm.data_addr_start = (ul)&_data;
  519. initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
  520. initial_mm.rodata_addr_start = (ul)&_rodata;
  521. initial_mm.rodata_addr_end = (ul)&_erodata;
  522. initial_mm.bss_start = (uint64_t)&_bss;
  523. initial_mm.bss_end = (uint64_t)&_ebss;
  524. initial_mm.brk_start = memory_management_struct.start_brk;
  525. initial_mm.brk_end = current_pcb->addr_limit;
  526. initial_mm.stack_start = _stack_start;
  527. initial_mm.vmas = NULL;
  528. initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
  529. // ========= 在IDLE进程的顶层页表中添加对内核地址空间的映射 =====================
  530. // 由于IDLE进程的顶层页表的高地址部分会被后续进程所复制,为了使所有进程能够共享相同的内核空间,
  531. // 因此需要先在IDLE进程的顶层页表内映射二级页表
  532. uint64_t *idle_pml4t_vaddr = (uint64_t *)phys_2_virt((uint64_t)get_CR3() & (~0xfffUL));
  533. for (int i = 256; i < 512; ++i)
  534. {
  535. uint64_t *tmp = idle_pml4t_vaddr + i;
  536. barrier();
  537. if (*tmp == 0)
  538. {
  539. void *pdpt = kmalloc(PAGE_4K_SIZE, 0);
  540. barrier();
  541. memset(pdpt, 0, PAGE_4K_SIZE);
  542. barrier();
  543. set_pml4t(tmp, mk_pml4t(virt_2_phys(pdpt), PAGE_KERNEL_PGT));
  544. }
  545. }
  546. barrier();
  547. flush_tlb();
  548. /*
  549. kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
  550. kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
  551. kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
  552. */
  553. // 初始化pid的写锁
  554. spin_init(&process_global_pid_write_lock);
  555. // 初始化进程的循环链表
  556. list_init(&initial_proc_union.pcb.list);
  557. barrier();
  558. kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_SIGNAL); // 初始化内核线程
  559. barrier();
  560. initial_proc_union.pcb.state = PROC_RUNNING;
  561. initial_proc_union.pcb.preempt_count = 0;
  562. initial_proc_union.pcb.cpu_id = 0;
  563. initial_proc_union.pcb.virtual_runtime = (1UL << 60);
  564. current_pcb->virtual_runtime = (1UL << 60);
  565. }
  566. /**
  567. * @brief fork当前进程
  568. *
  569. * @param regs 新的寄存器值
  570. * @param clone_flags 克隆标志
  571. * @param stack_start 堆栈开始地址
  572. * @param stack_size 堆栈大小
  573. * @return unsigned long
  574. */
  575. unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
  576. {
  577. int retval = 0;
  578. struct process_control_block *tsk = NULL;
  579. // 为新的进程分配栈空间,并将pcb放置在底部
  580. tsk = (struct process_control_block *)kmalloc(STACK_SIZE, 0);
  581. barrier();
  582. if (tsk == NULL)
  583. {
  584. retval = -ENOMEM;
  585. return retval;
  586. }
  587. barrier();
  588. memset(tsk, 0, sizeof(struct process_control_block));
  589. io_mfence();
  590. // 将当前进程的pcb复制到新的pcb内
  591. memcpy(tsk, current_pcb, sizeof(struct process_control_block));
  592. io_mfence();
  593. // 初始化进程的循环链表结点
  594. list_init(&tsk->list);
  595. io_mfence();
  596. // 判断是否为内核态调用fork
  597. if (current_pcb->flags & PF_KTHREAD && stack_start != 0)
  598. tsk->flags |= PF_KFORK;
  599. tsk->priority = 2;
  600. tsk->preempt_count = 0;
  601. // 增加全局的pid并赋值给新进程的pid
  602. spin_lock(&process_global_pid_write_lock);
  603. tsk->pid = process_global_pid++;
  604. barrier();
  605. // 加入到进程链表中
  606. tsk->next_pcb = initial_proc_union.pcb.next_pcb;
  607. barrier();
  608. initial_proc_union.pcb.next_pcb = tsk;
  609. barrier();
  610. tsk->parent_pcb = current_pcb;
  611. barrier();
  612. spin_unlock(&process_global_pid_write_lock);
  613. tsk->cpu_id = proc_current_cpu_id;
  614. tsk->state = PROC_UNINTERRUPTIBLE;
  615. tsk->parent_pcb = current_pcb;
  616. wait_queue_init(&tsk->wait_child_proc_exit, NULL);
  617. barrier();
  618. list_init(&tsk->list);
  619. retval = -ENOMEM;
  620. // 拷贝标志位
  621. if (process_copy_flags(clone_flags, tsk))
  622. goto copy_flags_failed;
  623. // 拷贝内存空间分布结构体
  624. if (process_copy_mm(clone_flags, tsk))
  625. goto copy_mm_failed;
  626. // 拷贝文件
  627. if (process_copy_files(clone_flags, tsk))
  628. goto copy_files_failed;
  629. // 拷贝线程结构体
  630. if (process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs))
  631. goto copy_thread_failed;
  632. // 拷贝成功
  633. retval = tsk->pid;
  634. tsk->flags &= ~PF_KFORK;
  635. // 唤醒进程
  636. process_wakeup(tsk);
  637. return retval;
  638. copy_thread_failed:;
  639. // 回收线程
  640. process_exit_thread(tsk);
  641. copy_files_failed:;
  642. // 回收文件
  643. process_exit_files(tsk);
  644. copy_mm_failed:;
  645. // 回收内存空间分布结构体
  646. process_exit_mm(tsk);
  647. copy_flags_failed:;
  648. kfree(tsk);
  649. return retval;
  650. return 0;
  651. }
  652. /**
  653. * @brief 根据pid获取进程的pcb
  654. *
  655. * @param pid
  656. * @return struct process_control_block*
  657. */
  658. struct process_control_block *process_get_pcb(long pid)
  659. {
  660. struct process_control_block *pcb = initial_proc_union.pcb.next_pcb;
  661. // 使用蛮力法搜索指定pid的pcb
  662. // todo: 使用哈希表来管理pcb
  663. for (; pcb != &initial_proc_union.pcb; pcb = pcb->next_pcb)
  664. {
  665. if (pcb->pid == pid)
  666. return pcb;
  667. }
  668. return NULL;
  669. }
  670. /**
  671. * @brief 将进程加入到调度器的就绪队列中
  672. *
  673. * @param pcb 进程的pcb
  674. */
  675. void process_wakeup(struct process_control_block *pcb)
  676. {
  677. pcb->state = PROC_RUNNING;
  678. sched_enqueue(pcb);
  679. }
  680. /**
  681. * @brief 将进程加入到调度器的就绪队列中,并标志当前进程需要被调度
  682. *
  683. * @param pcb 进程的pcb
  684. */
  685. void process_wakeup_immediately(struct process_control_block *pcb)
  686. {
  687. pcb->state = PROC_RUNNING;
  688. sched_enqueue(pcb);
  689. // 将当前进程标志为需要调度,缩短新进程被wakeup的时间
  690. current_pcb->flags |= PF_NEED_SCHED;
  691. }
  692. /**
  693. * @brief 拷贝当前进程的标志位
  694. *
  695. * @param clone_flags 克隆标志位
  696. * @param pcb 新的进程的pcb
  697. * @return uint64_t
  698. */
  699. uint64_t process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb)
  700. {
  701. if (clone_flags & CLONE_VM)
  702. pcb->flags |= PF_VFORK;
  703. return 0;
  704. }
  705. /**
  706. * @brief 拷贝当前进程的文件描述符等信息
  707. *
  708. * @param clone_flags 克隆标志位
  709. * @param pcb 新的进程的pcb
  710. * @return uint64_t
  711. */
  712. uint64_t process_copy_files(uint64_t clone_flags, struct process_control_block *pcb)
  713. {
  714. int retval = 0;
  715. // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符
  716. // 文件描述符已经在复制pcb时被拷贝
  717. if (clone_flags & CLONE_FS)
  718. return retval;
  719. // 为新进程拷贝新的文件描述符
  720. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  721. {
  722. if (current_pcb->fds[i] == NULL)
  723. continue;
  724. pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0);
  725. memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t));
  726. }
  727. return retval;
  728. }
  729. /**
  730. * @brief 回收进程的所有文件描述符
  731. *
  732. * @param pcb 要被回收的进程的pcb
  733. * @return uint64_t
  734. */
  735. uint64_t process_exit_files(struct process_control_block *pcb)
  736. {
  737. // 不与父进程共享文件描述符
  738. if (!(pcb->flags & PF_VFORK))
  739. {
  740. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  741. {
  742. if (pcb->fds[i] == NULL)
  743. continue;
  744. kfree(pcb->fds[i]);
  745. }
  746. }
  747. // 清空当前进程的文件描述符列表
  748. memset(pcb->fds, 0, sizeof(struct vfs_file_t *) * PROC_MAX_FD_NUM);
  749. }
  750. /**
  751. * @brief 拷贝当前进程的内存空间分布结构体信息
  752. *
  753. * @param clone_flags 克隆标志位
  754. * @param pcb 新的进程的pcb
  755. * @return uint64_t
  756. */
  757. uint64_t process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb)
  758. {
  759. int retval = 0;
  760. // 与父进程共享内存空间
  761. if (clone_flags & CLONE_VM)
  762. {
  763. pcb->mm = current_pcb->mm;
  764. return retval;
  765. }
  766. // 分配新的内存空间分布结构体
  767. struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0);
  768. memset(new_mms, 0, sizeof(struct mm_struct));
  769. memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct));
  770. new_mms->vmas = NULL;
  771. pcb->mm = new_mms;
  772. // 分配顶层页表, 并设置顶层页表的物理地址
  773. new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0));
  774. // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零
  775. memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2);
  776. // 拷贝内核空间的页表指针
  777. memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2);
  778. uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd);
  779. uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd);
  780. // 拷贝用户空间的vma
  781. struct vm_area_struct *vma = current_pcb->mm->vmas;
  782. while (vma != NULL)
  783. {
  784. if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY)
  785. {
  786. vma = vma->vm_next;
  787. continue;
  788. }
  789. int64_t vma_size = vma->vm_end - vma->vm_start;
  790. // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start);
  791. if (vma_size > PAGE_2M_SIZE / 2)
  792. {
  793. int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT;
  794. for (int i = 0; i < page_to_alloc; ++i)
  795. {
  796. uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys;
  797. struct vm_area_struct *new_vma = NULL;
  798. int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma);
  799. // 防止内存泄露
  800. if (unlikely(ret == -EEXIST))
  801. free_pages(Phy_to_2M_Page(pa), 1);
  802. else
  803. mm_map_vma(new_vma, pa);
  804. memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size);
  805. vma_size -= PAGE_2M_SIZE;
  806. }
  807. }
  808. else
  809. {
  810. uint64_t map_size = PAGE_4K_ALIGN(vma_size);
  811. uint64_t va = (uint64_t)kmalloc(map_size, 0);
  812. struct vm_area_struct *new_vma = NULL;
  813. int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma);
  814. // 防止内存泄露
  815. if (unlikely(ret == -EEXIST))
  816. kfree((void *)va);
  817. else
  818. mm_map_vma(new_vma, virt_2_phys(va));
  819. memcpy((void *)va, (void *)vma->vm_start, vma_size);
  820. }
  821. vma = vma->vm_next;
  822. }
  823. return retval;
  824. }
  825. /**
  826. * @brief 释放进程的页表
  827. *
  828. * @param pcb 要被释放页表的进程
  829. * @return uint64_t
  830. */
  831. uint64_t process_exit_mm(struct process_control_block *pcb)
  832. {
  833. if (pcb->flags & CLONE_VM)
  834. return 0;
  835. if (pcb->mm == NULL)
  836. {
  837. kdebug("pcb->mm==NULL");
  838. return 0;
  839. }
  840. if (pcb->mm->pgd == NULL)
  841. {
  842. kdebug("pcb->mm->pgd==NULL");
  843. return 0;
  844. }
  845. // // 获取顶层页表
  846. pml4t_t *current_pgd = (pml4t_t *)phys_2_virt(pcb->mm->pgd);
  847. // 循环释放VMA中的内存
  848. struct vm_area_struct *vma = pcb->mm->vmas;
  849. while (vma != NULL)
  850. {
  851. struct vm_area_struct *cur_vma = vma;
  852. vma = cur_vma->vm_next;
  853. uint64_t pa;
  854. // kdebug("vm start=%#018lx, sem=%d", cur_vma->vm_start, cur_vma->anon_vma->sem.counter);
  855. mm_unmap_vma(pcb->mm, cur_vma, &pa);
  856. uint64_t size = (cur_vma->vm_end - cur_vma->vm_start);
  857. // 释放内存
  858. switch (size)
  859. {
  860. case PAGE_4K_SIZE:
  861. kfree(phys_2_virt(pa));
  862. break;
  863. default:
  864. break;
  865. }
  866. vm_area_del(cur_vma);
  867. vm_area_free(cur_vma);
  868. }
  869. // 释放顶层页表
  870. kfree(current_pgd);
  871. if (unlikely(pcb->mm->vmas != NULL))
  872. {
  873. kwarn("pcb.mm.vmas!=NULL");
  874. }
  875. // 释放内存空间分布结构体
  876. kfree(pcb->mm);
  877. return 0;
  878. }
  879. /**
  880. * @brief 重写内核栈中的rbp地址
  881. *
  882. * @param new_regs 子进程的reg
  883. * @param new_pcb 子进程的pcb
  884. * @return int
  885. */
  886. static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb)
  887. {
  888. uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE;
  889. uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE;
  890. uint64_t *rbp = &new_regs->rbp;
  891. uint64_t *tmp = rbp;
  892. // 超出内核栈范围
  893. if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE))
  894. return 0;
  895. while (1)
  896. {
  897. // 计算delta
  898. uint64_t delta = old_top - *rbp;
  899. // 计算新的rbp值
  900. uint64_t newVal = new_top - delta;
  901. // 新的值不合法
  902. if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE)))
  903. break;
  904. // 将新的值写入对应位置
  905. *rbp = newVal;
  906. // 跳转栈帧
  907. rbp = (uint64_t *)*rbp;
  908. }
  909. // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值
  910. new_regs->rsp = new_top - (old_top - new_regs->rsp);
  911. return 0;
  912. }
  913. /**
  914. * @brief 拷贝当前进程的线程结构体
  915. *
  916. * @param clone_flags 克隆标志位
  917. * @param pcb 新的进程的pcb
  918. * @return uint64_t
  919. */
  920. uint64_t process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs)
  921. {
  922. // 将线程结构体放置在pcb后方
  923. struct thread_struct *thd = (struct thread_struct *)(pcb + 1);
  924. memset(thd, 0, sizeof(struct thread_struct));
  925. pcb->thread = thd;
  926. struct pt_regs *child_regs = NULL;
  927. // 拷贝栈空间
  928. if (pcb->flags & PF_KFORK) // 内核态下的fork
  929. {
  930. // 内核态下则拷贝整个内核栈
  931. uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs);
  932. child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size);
  933. memcpy(child_regs, (void *)current_regs, size);
  934. barrier();
  935. // 然后重写新的栈中,每个栈帧的rbp值
  936. process_rewrite_rbp(child_regs, pcb);
  937. }
  938. else
  939. {
  940. child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs));
  941. memcpy(child_regs, current_regs, sizeof(struct pt_regs));
  942. barrier();
  943. child_regs->rsp = stack_start;
  944. }
  945. // 设置子进程的返回值为0
  946. child_regs->rax = 0;
  947. if (pcb->flags & PF_KFORK)
  948. thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp)
  949. else
  950. thd->rbp = (uint64_t)pcb + STACK_SIZE;
  951. // 设置新的内核线程开始执行的时候的rsp
  952. thd->rsp = (uint64_t)child_regs;
  953. thd->fs = current_pcb->thread->fs;
  954. thd->gs = current_pcb->thread->gs;
  955. // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址
  956. if (pcb->flags & PF_KFORK)
  957. thd->rip = (uint64_t)ret_from_system_call;
  958. else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK)))
  959. thd->rip = (uint64_t)kernel_thread_func;
  960. else
  961. thd->rip = (uint64_t)ret_from_system_call;
  962. return 0;
  963. }
  964. /**
  965. * @brief todo: 回收线程结构体
  966. *
  967. * @param pcb
  968. */
  969. void process_exit_thread(struct process_control_block *pcb)
  970. {
  971. }
  972. /**
  973. * @brief 申请可用的文件句柄
  974. *
  975. * @return int
  976. */
  977. int process_fd_alloc(struct vfs_file_t *file)
  978. {
  979. int fd_num = -1;
  980. struct vfs_file_t **f = current_pcb->fds;
  981. for (int i = 0; i < PROC_MAX_FD_NUM; ++i)
  982. {
  983. /* 找到指针数组中的空位 */
  984. if (f[i] == NULL)
  985. {
  986. fd_num = i;
  987. f[i] = file;
  988. break;
  989. }
  990. }
  991. return fd_num;
  992. }