smp.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. #include "smp.h"
  2. #include <common/kprint.h>
  3. #include <driver/interrupt/apic/apic.h>
  4. #include <exception/gate.h>
  5. #include <common/cpu.h>
  6. #include <mm/slab.h>
  7. #include <process/process.h>
  8. #include <common/spinlock.h>
  9. #include <sched/sched.h>
  10. #include "ipi.h"
  11. #pragma GCC push_options
  12. #pragma GCC optimize("O0")
  13. void ipi_0xc8_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs); // 由BSP转发的HPET中断处理函数
  14. static spinlock_t multi_core_starting_lock; // 多核启动锁
  15. static struct acpi_Processor_Local_APIC_Structure_t *proc_local_apic_structs[MAX_SUPPORTED_PROCESSOR_NUM];
  16. static uint32_t total_processor_num = 0;
  17. int current_starting_cpu = 0;
  18. int num_cpu_started = 1;
  19. void smp_init()
  20. {
  21. spin_init(&multi_core_starting_lock); // 初始化多核启动锁
  22. ul tmp_vaddr[MAX_SUPPORTED_PROCESSOR_NUM] = {0};
  23. apic_get_ics(ACPI_ICS_TYPE_PROCESSOR_LOCAL_APIC, tmp_vaddr, &total_processor_num);
  24. // kdebug("processor num=%d", total_processor_num);
  25. for (int i = 0; i < total_processor_num; ++i)
  26. proc_local_apic_structs[i] = (struct acpi_Processor_Local_APIC_Structure_t *)(tmp_vaddr[i]);
  27. //*(uchar *)0x20000 = 0xf4; // 在内存的0x20000处写入HLT指令(AP处理器会执行物理地址0x20000的代码)
  28. // 将引导程序复制到物理地址0x20000处
  29. memcpy((unsigned char *)phys_2_virt(0x20000), _apu_boot_start, (unsigned long)&_apu_boot_end - (unsigned long)&_apu_boot_start);
  30. // 设置多核IPI中断门
  31. for (int i = 200; i < 210; ++i)
  32. set_intr_gate(i, 0, SMP_interrupt_table[i - 200]);
  33. memset((void *)SMP_IPI_desc, 0, sizeof(irq_desc_t) * SMP_IRQ_NUM);
  34. // 注册接收bsp处理器的hpet中断转发的处理函数
  35. ipi_regiserIPI(0xc8, NULL, &ipi_0xc8_handler, NULL, NULL, "IPI 0xc8");
  36. ipi_send_IPI(DEST_PHYSICAL, IDLE, ICR_LEVEL_DE_ASSERT, EDGE_TRIGGER, 0x00, ICR_INIT, ICR_ALL_EXCLUDE_Self, true, 0x00);
  37. kdebug("total_processor_num=%d", total_processor_num);
  38. for (int i = 1; i < total_processor_num; ++i) // i从1开始,不初始化bsp
  39. {
  40. if (proc_local_apic_structs[i]->ACPI_Processor_UID == 0)
  41. --total_processor_num;
  42. if (proc_local_apic_structs[i]->local_apic_id > total_processor_num)
  43. {
  44. --total_processor_num;
  45. continue;}
  46. kdebug("[core %d] acpi processor UID=%d, APIC ID=%d, flags=%#010lx", i, proc_local_apic_structs[i]->ACPI_Processor_UID, proc_local_apic_structs[i]->local_apic_id, proc_local_apic_structs[i]->flags);
  47. spin_lock(&multi_core_starting_lock);
  48. preempt_enable(); // 由于ap处理器的pcb与bsp的不同,因此ap处理器放锁时,bsp的自旋锁持有计数不会发生改变,需要手动恢复preempt count
  49. current_starting_cpu = proc_local_apic_structs[i]->local_apic_id;
  50. // 为每个AP处理器分配栈空间
  51. cpu_core_info[current_starting_cpu].stack_start = (uint64_t)kmalloc(STACK_SIZE, 0) + STACK_SIZE;
  52. cpu_core_info[current_starting_cpu].ist_stack_start = (uint64_t)(kmalloc(STACK_SIZE, 0)) + STACK_SIZE;
  53. memset((void *)cpu_core_info[current_starting_cpu].stack_start - STACK_SIZE, 0, STACK_SIZE);
  54. memset((void *)cpu_core_info[current_starting_cpu].ist_stack_start - STACK_SIZE, 0, STACK_SIZE);
  55. // 设置ap处理器的中断栈及内核栈中的cpu_id
  56. ((struct process_control_block *)(cpu_core_info[current_starting_cpu].stack_start - STACK_SIZE))->cpu_id = proc_local_apic_structs[i]->local_apic_id;
  57. ((struct process_control_block *)(cpu_core_info[current_starting_cpu].ist_stack_start - STACK_SIZE))->cpu_id = proc_local_apic_structs[i]->local_apic_id;
  58. cpu_core_info[current_starting_cpu].tss_vaddr = (uint64_t)&initial_tss[current_starting_cpu];
  59. memset(&initial_tss[current_starting_cpu], 0, sizeof(struct tss_struct));
  60. set_tss_descriptor(10 + (current_starting_cpu * 2), (void *)(cpu_core_info[current_starting_cpu].tss_vaddr));
  61. set_tss64((uint *)cpu_core_info[current_starting_cpu].tss_vaddr, cpu_core_info[current_starting_cpu].stack_start, cpu_core_info[current_starting_cpu].stack_start, cpu_core_info[current_starting_cpu].stack_start,
  62. cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start);
  63. // 连续发送两次start-up IPI
  64. ipi_send_IPI(DEST_PHYSICAL, IDLE, ICR_LEVEL_DE_ASSERT, EDGE_TRIGGER, 0x20, ICR_Start_up, ICR_No_Shorthand, true, proc_local_apic_structs[i]->local_apic_id);
  65. ipi_send_IPI(DEST_PHYSICAL, IDLE, ICR_LEVEL_DE_ASSERT, EDGE_TRIGGER, 0x20, ICR_Start_up, ICR_No_Shorthand, true, proc_local_apic_structs[i]->local_apic_id);
  66. }
  67. while (num_cpu_started != total_processor_num)
  68. __asm__ __volatile__("pause" ::
  69. : "memory");
  70. kinfo("Cleaning page table remapping...\n");
  71. // 由于ap处理器初始化过程需要用到0x00处的地址,因此初始化完毕后才取消内存地址的重映射
  72. uint64_t *global_CR3 = get_CR3();
  73. for (int i = 0; i < 256; ++i)
  74. {
  75. *(ul *)(phys_2_virt(global_CR3) + i) = 0UL;
  76. }
  77. kdebug("init proc's preempt_count=%ld", current_pcb->preempt_count);
  78. kinfo("Successfully cleaned page table remapping!\n");
  79. }
  80. /**
  81. * @brief AP处理器启动后执行的第一个函数
  82. *
  83. */
  84. void smp_ap_start()
  85. {
  86. // 切换栈基地址
  87. // uint64_t stack_start = (uint64_t)kmalloc(STACK_SIZE, 0) + STACK_SIZE;
  88. __asm__ __volatile__("movq %0, %%rbp \n\t" ::"m"(cpu_core_info[current_starting_cpu].stack_start)
  89. : "memory");
  90. __asm__ __volatile__("movq %0, %%rsp \n\t" ::"m"(cpu_core_info[current_starting_cpu].stack_start)
  91. : "memory");
  92. /*
  93. __asm__ __volatile__("movq %0, %%rbp \n\t" ::"m"(stack_start)
  94. : "memory");
  95. __asm__ __volatile__("movq %0, %%rsp \n\t" ::"m"(stack_start)
  96. : "memory");*/
  97. ksuccess("AP core successfully started!");
  98. ++num_cpu_started;
  99. kdebug("current cpu = %d", current_starting_cpu);
  100. apic_init_ap_core_local_apic();
  101. // ============ 为ap处理器初始化IDLE进程 =============
  102. memset(current_pcb, 0, sizeof(struct process_control_block));
  103. current_pcb->state = PROC_RUNNING;
  104. current_pcb->flags = PF_KTHREAD;
  105. current_pcb->mm = &initial_mm;
  106. list_init(&current_pcb->list);
  107. current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR;
  108. current_pcb->priority = 2;
  109. current_pcb->virtual_runtime = 0;
  110. current_pcb->thread = (struct thread_struct *)(current_pcb + 1); // 将线程结构体放置在pcb后方
  111. current_pcb->thread->rbp = _stack_start;
  112. current_pcb->thread->rsp = _stack_start;
  113. current_pcb->thread->fs = KERNEL_DS;
  114. current_pcb->thread->gs = KERNEL_DS;
  115. current_pcb->cpu_id = current_starting_cpu;
  116. initial_proc[proc_current_cpu_id] = current_pcb;
  117. load_TR(10 + current_starting_cpu * 2);
  118. current_pcb->preempt_count = 0;
  119. // kdebug("IDT_addr = %#018lx", phys_2_virt(IDT_Table));
  120. spin_unlock(&multi_core_starting_lock);
  121. preempt_disable();// 由于ap处理器的pcb与bsp的不同,因此ap处理器放锁时,需要手动恢复preempt count
  122. sti();
  123. while (1)
  124. hlt();
  125. /*
  126. if (proc_current_cpu_id == 1)
  127. process_init();
  128. */
  129. while (1)
  130. {
  131. printk_color(BLACK, WHITE, "CPU:%d IDLE process.\n", proc_current_cpu_id);
  132. }
  133. while (1) // 这里要循环hlt,原因是当收到中断后,核心会被唤醒,处理完中断之后不会自动hlt
  134. hlt();
  135. }
  136. // 由BSP转发的HPET中断处理函数
  137. void ipi_0xc8_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs)
  138. {
  139. sched_update_jiffies();
  140. }
  141. #pragma GCC optimize("O0")