mm.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. #include "mm.h"
  2. #include "slab.h"
  3. #include "../common/printk.h"
  4. #include "../common/kprint.h"
  5. #include "../driver/multiboot2/multiboot2.h"
  6. ul Total_Memory = 0;
  7. ul total_2M_pages = 0;
  8. void mm_init()
  9. {
  10. kinfo("Initializing memory management unit...");
  11. // 设置内核程序不同部分的起止地址
  12. memory_management_struct.kernel_code_start = (ul)&_text;
  13. memory_management_struct.kernel_code_end = (ul)&_etext;
  14. memory_management_struct.kernel_data_end = (ul)&_edata;
  15. memory_management_struct.kernel_end = (ul)&_end;
  16. struct multiboot_mmap_entry_t *mb2_mem_info;
  17. int count;
  18. multiboot2_iter(multiboot2_get_memory, mb2_mem_info, &count);
  19. for (int i = 0; i < count; ++i)
  20. {
  21. //可用的内存
  22. if (mb2_mem_info->type == 1)
  23. Total_Memory += mb2_mem_info->len;
  24. // 保存信息到mms
  25. memory_management_struct.e820[i].BaseAddr = mb2_mem_info->addr;
  26. memory_management_struct.e820[i].Length = mb2_mem_info->len;
  27. memory_management_struct.e820[i].type = mb2_mem_info->type;
  28. memory_management_struct.len_e820 = i;
  29. ++mb2_mem_info;
  30. // 脏数据
  31. if (mb2_mem_info->type > 4 || mb2_mem_info->len == 0 || mb2_mem_info->type < 1)
  32. break;
  33. }
  34. printk("[ INFO ] Total amounts of RAM : %ld bytes\n", Total_Memory);
  35. // 计算有效内存页数
  36. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  37. {
  38. if (memory_management_struct.e820[i].type != 1)
  39. continue;
  40. // 将内存段的起始物理地址按照2M进行对齐
  41. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  42. // 将内存段的终止物理地址的低2M区域清空,以实现对齐
  43. ul addr_end = ((memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK);
  44. // 内存段不可用
  45. if (addr_end <= addr_start)
  46. continue;
  47. total_2M_pages += ((addr_end - addr_start) >> PAGE_2M_SHIFT);
  48. }
  49. kinfo("Total amounts of 2M pages : %ld.", total_2M_pages);
  50. // 物理地址空间的最大地址(包含了物理内存、内存空洞、ROM等)
  51. ul max_addr = memory_management_struct.e820[memory_management_struct.len_e820].BaseAddr + memory_management_struct.e820[memory_management_struct.len_e820].Length;
  52. // 初始化mms的bitmap
  53. // bmp的指针指向截止位置的4k对齐的上边界(防止修改了别的数据)
  54. memory_management_struct.bmp = (unsigned long *)((memory_management_struct.kernel_end + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  55. memory_management_struct.bits_size = max_addr >> PAGE_2M_SHIFT; // 物理地址空间的最大页面数
  56. memory_management_struct.bmp_len = (((unsigned long)(max_addr >> PAGE_2M_SHIFT) + sizeof(unsigned long) * 8 - 1) / 8) & (~(sizeof(unsigned long) - 1)); // bmp由多少个unsigned long变量组成
  57. // 初始化bitmap, 先将整个bmp空间全部置位。稍后再将可用物理内存页复位。
  58. memset(memory_management_struct.bmp, 0xff, memory_management_struct.bmp_len);
  59. // 初始化内存页结构
  60. // 将页结构映射于bmp之后
  61. memory_management_struct.pages_struct = (struct Page *)(((unsigned long)memory_management_struct.bmp + memory_management_struct.bmp_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  62. memory_management_struct.count_pages = max_addr >> PAGE_2M_SHIFT;
  63. memory_management_struct.pages_struct_len = ((max_addr >> PAGE_2M_SHIFT) * sizeof(struct Page) + sizeof(long) - 1) & (~(sizeof(long) - 1));
  64. // 将pages_struct全部清空,以备后续初始化
  65. memset(memory_management_struct.pages_struct, 0x00, memory_management_struct.pages_struct_len); // init pages memory
  66. // 初始化内存区域
  67. memory_management_struct.zones_struct = (struct Zone *)(((ul)memory_management_struct.pages_struct + memory_management_struct.pages_struct_len + PAGE_4K_SIZE - 1) & PAGE_4K_MASK);
  68. // 由于暂时无法计算zone结构体的数量,因此先将其设为0
  69. memory_management_struct.count_zones = 0;
  70. // zones-struct 成员变量暂时按照5个来计算
  71. memory_management_struct.zones_struct_len = (5 * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  72. memset(memory_management_struct.zones_struct, 0x00, memory_management_struct.zones_struct_len);
  73. // ==== 遍历e820数组,完成成员变量初始化工作 ===
  74. for (int i = 0; i < memory_management_struct.len_e820; ++i)
  75. {
  76. if (memory_management_struct.e820[i].type != 1) // 不是操作系统可以使用的物理内存
  77. continue;
  78. ul addr_start = PAGE_2M_ALIGN(memory_management_struct.e820[i].BaseAddr);
  79. ul addr_end = (memory_management_struct.e820[i].BaseAddr + memory_management_struct.e820[i].Length) & PAGE_2M_MASK;
  80. if (addr_end <= addr_start)
  81. continue;
  82. // zone init
  83. struct Zone *z = memory_management_struct.zones_struct + memory_management_struct.count_zones;
  84. ++memory_management_struct.count_zones;
  85. z->zone_addr_start = addr_start;
  86. z->zone_addr_end = addr_end;
  87. z->zone_length = addr_end - addr_start;
  88. z->count_pages_using = 0;
  89. z->count_pages_free = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  90. z->total_pages_link = 0;
  91. z->attr = 0;
  92. z->gmd_struct = &memory_management_struct;
  93. z->count_pages = (addr_end - addr_start) >> PAGE_2M_SHIFT;
  94. z->pages_group = (struct Page *)(memory_management_struct.pages_struct + (addr_start >> PAGE_2M_SHIFT));
  95. // 初始化页
  96. struct Page *p = z->pages_group;
  97. for (int j = 0; j < z->count_pages; ++j, ++p)
  98. {
  99. p->zone = z;
  100. p->addr_phys = addr_start + PAGE_2M_SIZE * j;
  101. p->attr = 0;
  102. p->ref_counts = 0;
  103. p->age = 0;
  104. // 将bmp中对应的位 复位
  105. *(memory_management_struct.bmp + ((p->addr_phys >> PAGE_2M_SHIFT) >> 6)) ^= (1UL << ((p->addr_phys >> PAGE_2M_SHIFT) % 64));
  106. }
  107. }
  108. // 初始化0~2MB的物理页
  109. // 由于这个区间的内存由多个内存段组成,因此不会被以上代码初始化,需要我们手动配置page[0]。
  110. memory_management_struct.pages_struct->zone = memory_management_struct.zones_struct;
  111. memory_management_struct.pages_struct->addr_phys = 0UL;
  112. set_page_attr(memory_management_struct.pages_struct, PAGE_PGT_MAPPED | PAGE_KERNEL_INIT | PAGE_KERNEL);
  113. memory_management_struct.pages_struct->ref_counts = 1;
  114. memory_management_struct.pages_struct->age = 0;
  115. // 将第0页的标志位给置上
  116. //*(memory_management_struct.bmp) |= 1UL;
  117. // 计算zone结构体的总长度(按照64位对齐)
  118. memory_management_struct.zones_struct_len = (memory_management_struct.count_zones * sizeof(struct Zone) + sizeof(ul) - 1) & (~(sizeof(ul) - 1));
  119. ZONE_DMA_INDEX = 0;
  120. ZONE_NORMAL_INDEX = 0;
  121. ZONE_UNMAPPED_INDEX = 0;
  122. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  123. {
  124. struct Zone *z = memory_management_struct.zones_struct + i;
  125. // printk_color(ORANGE, BLACK, "zone_addr_start:%#18lx, zone_addr_end:%#18lx, zone_length:%#18lx, pages_group:%#18lx, count_pages:%#18lx\n",
  126. // z->zone_addr_start, z->zone_addr_end, z->zone_length, z->pages_group, z->count_pages);
  127. // 1GB以上的内存空间不做映射
  128. if (z->zone_addr_start >= 0x100000000 && (!ZONE_UNMAPPED_INDEX))
  129. ZONE_UNMAPPED_INDEX = i;
  130. }
  131. kdebug("ZONE_DMA_INDEX=%d\tZONE_NORMAL_INDEX=%d\tZONE_UNMAPPED_INDEX=%d", ZONE_DMA_INDEX, ZONE_NORMAL_INDEX, ZONE_UNMAPPED_INDEX);
  132. // 设置内存页管理结构的地址,预留了一段空间,防止内存越界。
  133. memory_management_struct.end_of_struct = (ul)((ul)memory_management_struct.zones_struct + memory_management_struct.zones_struct_len + sizeof(long) * 32) & (~(sizeof(long) - 1));
  134. // printk_color(ORANGE, BLACK, "code_start:%#18lx, code_end:%#18lx, data_end:%#18lx, kernel_end:%#18lx, end_of_struct:%#18lx\n",
  135. // memory_management_struct.kernel_code_start, memory_management_struct.kernel_code_end, memory_management_struct.kernel_data_end, memory_management_struct.kernel_end, memory_management_struct.end_of_struct);
  136. // 初始化内存管理单元结构所占的物理页的结构体
  137. ul mms_max_page = (virt_2_phys(memory_management_struct.end_of_struct) >> PAGE_2M_SHIFT); // 内存管理单元所占据的序号最大的物理页
  138. kdebug("mms_max_page=%ld", mms_max_page);
  139. struct Page *tmp_page = NULL;
  140. ul page_num;
  141. // 第0个page已经在上方配置
  142. for (ul j = 1; j <= mms_max_page; ++j)
  143. {
  144. tmp_page = memory_management_struct.pages_struct + j;
  145. page_init(tmp_page, PAGE_PGT_MAPPED | PAGE_KERNEL | PAGE_KERNEL_INIT);
  146. page_num = tmp_page->addr_phys >> PAGE_2M_SHIFT;
  147. *(memory_management_struct.bmp + (page_num >> 6)) |= (1UL << (page_num % 64));
  148. ++tmp_page->zone->count_pages_using;
  149. --tmp_page->zone->count_pages_free;
  150. }
  151. global_CR3 = get_CR3();
  152. kdebug("global_CR3\t:%#018lx", global_CR3);
  153. kdebug("*global_CR3\t:%#018lx", *phys_2_virt(global_CR3) & (~0xff));
  154. kdebug("**global_CR3\t:%#018lx", *phys_2_virt(*phys_2_virt(global_CR3) & (~0xff)) & (~0xff));
  155. kdebug("1.memory_management_struct.bmp:%#018lx\tzone->count_pages_using:%d\tzone_struct->count_pages_free:%d", *memory_management_struct.bmp, memory_management_struct.zones_struct->count_pages_using, memory_management_struct.zones_struct->count_pages_free);
  156. kinfo("Memory management unit initialize complete!");
  157. /*
  158. kinfo("Cleaning page table remapping at 0x0000");
  159. for (int i = 0; i < 10; ++i)
  160. *(phys_2_virt(global_CR3) + i) = 0UL;
  161. kinfo("Successfully cleaned page table remapping!\n");
  162. */
  163. flush_tlb();
  164. // 初始化slab内存池
  165. slab_init();
  166. init_frame_buffer();
  167. page_table_init();
  168. }
  169. /**
  170. * @brief 初始化内存页
  171. *
  172. * @param page 内存页结构体
  173. * @param flags 标志位
  174. * 本函数只负责初始化内存页,允许对同一页面进行多次初始化
  175. * 而维护计数器及置位bmp标志位的功能,应当在分配页面的时候手动完成
  176. * @return unsigned long
  177. */
  178. unsigned long page_init(struct Page *page, ul flags)
  179. {
  180. page->attr |= flags;
  181. // 若页面的引用计数为0或是共享页,增加引用计数
  182. if ((!page->ref_counts) || (page->attr & PAGE_SHARED))
  183. {
  184. ++page->ref_counts;
  185. ++page->zone->total_pages_link;
  186. }
  187. return 0;
  188. }
  189. /**
  190. * @brief 从已初始化的页结构中搜索符合申请条件的、连续num个struct page
  191. *
  192. * @param zone_select 选择内存区域, 可选项:dma, mapped in pgt(normal), unmapped in pgt
  193. * @param num 需要申请的连续内存页的数量 num<64
  194. * @param flags 将页面属性设置成flag
  195. * @return struct Page*
  196. */
  197. struct Page *alloc_pages(unsigned int zone_select, int num, ul flags)
  198. {
  199. ul zone_start = 0, zone_end = 0;
  200. if (num >= 64 && num <= 0)
  201. {
  202. kerror("alloc_pages(): num is invalid.");
  203. return NULL;
  204. }
  205. ul attr = flags;
  206. switch (zone_select)
  207. {
  208. case ZONE_DMA:
  209. // DMA区域
  210. zone_start = 0;
  211. zone_end = ZONE_DMA_INDEX;
  212. attr |= PAGE_PGT_MAPPED;
  213. break;
  214. case ZONE_NORMAL:
  215. zone_start = ZONE_DMA_INDEX;
  216. zone_end = ZONE_NORMAL_INDEX;
  217. attr |= PAGE_PGT_MAPPED;
  218. break;
  219. case ZONE_UNMAPPED_IN_PGT:
  220. zone_start = ZONE_NORMAL_INDEX;
  221. zone_end = ZONE_UNMAPPED_INDEX;
  222. attr = 0;
  223. break;
  224. default:
  225. kerror("In alloc_pages: param: zone_select incorrect.");
  226. // 返回空
  227. return NULL;
  228. break;
  229. }
  230. for (int i = zone_start; i <= zone_end; ++i)
  231. {
  232. if ((memory_management_struct.zones_struct + i)->count_pages_free < num)
  233. continue;
  234. struct Zone *z = memory_management_struct.zones_struct + i;
  235. // 区域对应的起止页号
  236. ul page_start = (z->zone_addr_start >> PAGE_2M_SHIFT);
  237. ul page_end = (z->zone_addr_end >> PAGE_2M_SHIFT);
  238. ul tmp = 64 - page_start % 64;
  239. for (ul j = page_start; j < page_end; j += ((j % 64) ? tmp : 64))
  240. {
  241. // 按照bmp中的每一个元素进行查找
  242. // 先将p定位到bmp的起始元素
  243. ul *p = memory_management_struct.bmp + (j >> 6);
  244. ul shift = j % 64;
  245. ul tmp_num = ((1UL << num) - 1);
  246. for (ul k = shift; k < 64; ++k)
  247. {
  248. // 寻找连续num个空页
  249. if (!((k ? ((*p >> k) | (*(p + 1) << (64 - k))) : *p) & tmp_num))
  250. {
  251. ul start_page_num = j + k - shift; // 计算得到要开始获取的内存页的页号
  252. for (ul l = 0; l < num; ++l)
  253. {
  254. struct Page *x = memory_management_struct.pages_struct + start_page_num + l;
  255. // 分配页面,手动配置属性及计数器
  256. // 置位bmp
  257. *(memory_management_struct.bmp + ((x->addr_phys >> PAGE_2M_SHIFT) >> 6)) |= (1UL << (x->addr_phys >> PAGE_2M_SHIFT) % 64);
  258. ++z->count_pages_using;
  259. --z->count_pages_free;
  260. x->attr = attr;
  261. }
  262. // 成功分配了页面,返回第一个页面的指针
  263. // printk("start page num=%d\n",start_page_num);
  264. return (struct Page *)(memory_management_struct.pages_struct + start_page_num);
  265. }
  266. }
  267. }
  268. }
  269. return NULL;
  270. }
  271. /**
  272. * @brief 清除页面的引用计数, 计数为0时清空除页表已映射以外的所有属性
  273. *
  274. * @param p 物理页结构体
  275. * @return unsigned long
  276. */
  277. unsigned long page_clean(struct Page *p)
  278. {
  279. --p->ref_counts;
  280. --p->zone->total_pages_link;
  281. // 若引用计数为空,则清空除PAGE_PGT_MAPPED以外的所有属性
  282. if (!p->ref_counts)
  283. {
  284. p->attr &= PAGE_PGT_MAPPED;
  285. }
  286. return 0;
  287. }
  288. /**
  289. * @brief Get the page's attr
  290. *
  291. * @param page 内存页结构体
  292. * @return ul 属性
  293. */
  294. ul get_page_attr(struct Page *page)
  295. {
  296. if (page == NULL)
  297. {
  298. kBUG("get_page_attr(): page == NULL");
  299. return EPAGE_NULL;
  300. }
  301. else
  302. return page->attr;
  303. }
  304. /**
  305. * @brief Set the page's attr
  306. *
  307. * @param page 内存页结构体
  308. * @param flags 属性
  309. * @return ul 错误码
  310. */
  311. ul set_page_attr(struct Page *page, ul flags)
  312. {
  313. if (page == NULL)
  314. {
  315. kBUG("get_page_attr(): page == NULL");
  316. return EPAGE_NULL;
  317. }
  318. else
  319. {
  320. page->attr = flags;
  321. return 0;
  322. }
  323. }
  324. /**
  325. * @brief 释放连续number个内存页
  326. *
  327. * @param page 第一个要被释放的页面的结构体
  328. * @param number 要释放的内存页数量 number<64
  329. */
  330. void free_pages(struct Page *page, int number)
  331. {
  332. if (page == NULL)
  333. {
  334. kerror("free_pages() page is invalid.");
  335. return;
  336. }
  337. if (number >= 64 || number <= 0)
  338. {
  339. kerror("free_pages(): number %d is invalid.", number);
  340. return;
  341. }
  342. ul page_num;
  343. for (int i = 0; i < number; ++i, ++page)
  344. {
  345. page_num = page->addr_phys >> PAGE_2M_SHIFT;
  346. // 复位bmp
  347. *(memory_management_struct.bmp + (page_num >> 6)) &= ~(1UL << (page_num % 64));
  348. // 更新计数器
  349. --page->zone->count_pages_using;
  350. ++page->zone->count_pages_free;
  351. page->attr = 0;
  352. }
  353. return;
  354. }
  355. /**
  356. * @brief 重新初始化页表的函数
  357. * 将0~4GB的物理页映射到线性地址空间
  358. */
  359. void page_table_init()
  360. {
  361. kinfo("Initializing page table...");
  362. global_CR3 = get_CR3();
  363. // 由于CR3寄存器的[11..0]位是PCID标志位,因此将低12位置0后,就是PML4页表的基地址
  364. ul *pml4_addr = (ul *)((ul)phys_2_virt((ul)global_CR3 & (~0xfffUL)));
  365. kdebug("PML4 addr=%#018lx *pml4=%#018lx", pml4_addr, *pml4_addr);
  366. ul *pdpt_addr = phys_2_virt(*pml4_addr & (~0xfffUL));
  367. kdebug("pdpt addr=%#018lx *pdpt=%#018lx", pdpt_addr, *pdpt_addr);
  368. ul *pd_addr = phys_2_virt(*pdpt_addr & (~0xfffUL));
  369. kdebug("pd addr=%#018lx *pd=%#018lx", pd_addr, *pd_addr);
  370. ul *tmp_addr;
  371. for (int i = 0; i < memory_management_struct.count_zones; ++i)
  372. {
  373. struct Zone *z = memory_management_struct.zones_struct + i;
  374. struct Page *p = z->pages_group;
  375. if (i == ZONE_UNMAPPED_INDEX)
  376. break;
  377. for (int j = 0; j < z->count_pages; ++j)
  378. {
  379. // 计算出PML4页表中的页表项的地址
  380. tmp_addr = (ul *)((ul)pml4_addr + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_GDT_SHIFT) & 0x1ff) * 8);
  381. // 说明该页还没有分配pdpt页表,使用kmalloc分配一个
  382. if (*tmp_addr = 0)
  383. {
  384. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  385. set_pml4t(tmp_addr, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  386. }
  387. // 计算出pdpt页表的页表项的地址
  388. tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_1G_SHIFT) & 0x1ff) * 8);
  389. // 说明该页还没有分配pd页表,使用kmalloc分配一个
  390. if (*tmp_addr = 0)
  391. {
  392. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  393. set_pdpt(tmp_addr, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  394. }
  395. // 计算出pd页表的页表项的地址
  396. tmp_addr = (ul *)((ul)(phys_2_virt(*tmp_addr & (~0xfffUL))) + ((((ul)phys_2_virt(p->addr_phys)) >> PAGE_2M_SHIFT) & 0x1ff) * 8);
  397. // 填入pd页表的页表项,映射2MB物理页
  398. set_pdt(tmp_addr, mk_pdt(virt_2_phys(p->addr_phys), PAGE_KERNEL_PAGE));
  399. // 测试
  400. if (j % 50 == 0)
  401. kdebug("pd_addr=%#018lx, *pd_addr=%#018lx", tmp_addr, *tmp_addr);
  402. }
  403. }
  404. flush_tlb();
  405. kinfo("Page table Initialized.");
  406. }
  407. /**
  408. * @brief VBE帧缓存区的地址重新映射
  409. * 将帧缓存区映射到地址0xffff800003000000处
  410. */
  411. void init_frame_buffer()
  412. {
  413. kinfo("Re-mapping VBE frame buffer...");
  414. global_CR3 = get_CR3();
  415. ul fb_virt_addr = 0xffff800003000000;
  416. ul fb_phys_addr = get_VBE_FB_phys_addr();
  417. // 计算帧缓冲区的线性地址对应的pml4页表项的地址
  418. ul *tmp = phys_2_virt((ul *)((ul)global_CR3 & (~0xfffUL)) + ((fb_virt_addr >> PAGE_GDT_SHIFT) & 0x1ff));
  419. if (*tmp == 0)
  420. {
  421. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  422. set_pml4t(tmp, mk_pml4t(virt_2_phys(virt_addr), PAGE_KERNEL_PGT));
  423. }
  424. tmp = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + ((fb_virt_addr >> PAGE_1G_SHIFT) & 0x1ff));
  425. if (*tmp == 0)
  426. {
  427. ul *virt_addr = kmalloc(PAGE_4K_SIZE, 0);
  428. set_pdpt(tmp, mk_pdpt(virt_2_phys(virt_addr), PAGE_KERNEL_DIR));
  429. }
  430. ul vbe_fb_length = get_VBE_FB_length();
  431. ul *tmp1;
  432. // 初始化2M物理页
  433. for (ul i = 0; i < vbe_fb_length; i += PAGE_2M_SIZE)
  434. {
  435. // 计算当前2M物理页对应的pdt的页表项的物理地址
  436. tmp1 = phys_2_virt((ul *)(*tmp & (~0xfffUL)) + (((fb_virt_addr + i) >> PAGE_2M_SHIFT) & 0x1ff));
  437. // 页面写穿,禁止缓存
  438. set_pdt(tmp1, mk_pdt((ul)fb_phys_addr+i, PAGE_KERNEL_PAGE| PAGE_PWT| PAGE_PCD));
  439. }
  440. set_pos_VBE_FB_addr(fb_virt_addr);
  441. flush_tlb();
  442. kinfo("VBE frame buffer successfully Re-mapped!");
  443. }