|  | @@ -0,0 +1,1091 @@
 | 
	
		
			
				|  |  | +// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
 | 
	
		
			
				|  |  | +// file at the top-level directory of this distribution and at
 | 
	
		
			
				|  |  | +// http://rust-lang.org/COPYRIGHT.
 | 
	
		
			
				|  |  | +//
 | 
	
		
			
				|  |  | +// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
 | 
	
		
			
				|  |  | +// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
 | 
	
		
			
				|  |  | +// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
 | 
	
		
			
				|  |  | +// option. This file may not be copied, modified, or distributed
 | 
	
		
			
				|  |  | +// except according to those terms.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//! Rational numbers
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(feature = "serde")]
 | 
	
		
			
				|  |  | +extern crate serde;
 | 
	
		
			
				|  |  | +#[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +extern crate num_bigint as bigint;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +extern crate num_traits as traits;
 | 
	
		
			
				|  |  | +extern crate num_integer as integer;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +use std::cmp;
 | 
	
		
			
				|  |  | +use std::error::Error;
 | 
	
		
			
				|  |  | +use std::fmt;
 | 
	
		
			
				|  |  | +use std::hash;
 | 
	
		
			
				|  |  | +use std::ops::{Add, Div, Mul, Neg, Rem, Sub};
 | 
	
		
			
				|  |  | +use std::str::FromStr;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(feature = "serde")]
 | 
	
		
			
				|  |  | +use serde;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +use bigint::{BigInt, BigUint, Sign};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +use integer::Integer;
 | 
	
		
			
				|  |  | +use traits::{FromPrimitive, Float, PrimInt, Num, Signed, Zero, One};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/// Represents the ratio between 2 numbers.
 | 
	
		
			
				|  |  | +#[derive(Copy, Clone, Hash, Debug)]
 | 
	
		
			
				|  |  | +#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
 | 
	
		
			
				|  |  | +#[allow(missing_docs)]
 | 
	
		
			
				|  |  | +pub struct Ratio<T> {
 | 
	
		
			
				|  |  | +    numer: T,
 | 
	
		
			
				|  |  | +    denom: T,
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/// Alias for a `Ratio` of machine-sized integers.
 | 
	
		
			
				|  |  | +pub type Rational = Ratio<isize>;
 | 
	
		
			
				|  |  | +pub type Rational32 = Ratio<i32>;
 | 
	
		
			
				|  |  | +pub type Rational64 = Ratio<i64>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +/// Alias for arbitrary precision rationals.
 | 
	
		
			
				|  |  | +pub type BigRational = Ratio<BigInt>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> Ratio<T> {
 | 
	
		
			
				|  |  | +    /// Creates a ratio representing the integer `t`.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn from_integer(t: T) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new_raw(t, One::one())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Creates a ratio without checking for `denom == 0` or reducing.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio {
 | 
	
		
			
				|  |  | +            numer: numer,
 | 
	
		
			
				|  |  | +            denom: denom,
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Create a new Ratio. Fails if `denom == 0`.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn new(numer: T, denom: T) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        if denom == Zero::zero() {
 | 
	
		
			
				|  |  | +            panic!("denominator == 0");
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        let mut ret = Ratio::new_raw(numer, denom);
 | 
	
		
			
				|  |  | +        ret.reduce();
 | 
	
		
			
				|  |  | +        ret
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Converts to an integer.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn to_integer(&self) -> T {
 | 
	
		
			
				|  |  | +        self.trunc().numer
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Gets an immutable reference to the numerator.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn numer<'a>(&'a self) -> &'a T {
 | 
	
		
			
				|  |  | +        &self.numer
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Gets an immutable reference to the denominator.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn denom<'a>(&'a self) -> &'a T {
 | 
	
		
			
				|  |  | +        &self.denom
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Returns true if the rational number is an integer (denominator is 1).
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn is_integer(&self) -> bool {
 | 
	
		
			
				|  |  | +        self.denom == One::one()
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Put self into lowest terms, with denom > 0.
 | 
	
		
			
				|  |  | +    fn reduce(&mut self) {
 | 
	
		
			
				|  |  | +        let g: T = self.numer.gcd(&self.denom);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // FIXME(#5992): assignment operator overloads
 | 
	
		
			
				|  |  | +        // self.numer /= g;
 | 
	
		
			
				|  |  | +        self.numer = self.numer.clone() / g.clone();
 | 
	
		
			
				|  |  | +        // FIXME(#5992): assignment operator overloads
 | 
	
		
			
				|  |  | +        // self.denom /= g;
 | 
	
		
			
				|  |  | +        self.denom = self.denom.clone() / g;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // keep denom positive!
 | 
	
		
			
				|  |  | +        if self.denom < T::zero() {
 | 
	
		
			
				|  |  | +            self.numer = T::zero() - self.numer.clone();
 | 
	
		
			
				|  |  | +            self.denom = T::zero() - self.denom.clone();
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Returns a `reduce`d copy of self.
 | 
	
		
			
				|  |  | +    pub fn reduced(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        let mut ret = self.clone();
 | 
	
		
			
				|  |  | +        ret.reduce();
 | 
	
		
			
				|  |  | +        ret
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Returns the reciprocal.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn recip(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new_raw(self.denom.clone(), self.numer.clone())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Rounds towards minus infinity.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn floor(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        if *self < Zero::zero() {
 | 
	
		
			
				|  |  | +            let one: T = One::one();
 | 
	
		
			
				|  |  | +            Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) /
 | 
	
		
			
				|  |  | +                                self.denom.clone())
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            Ratio::from_integer(self.numer.clone() / self.denom.clone())
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Rounds towards plus infinity.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn ceil(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        if *self < Zero::zero() {
 | 
	
		
			
				|  |  | +            Ratio::from_integer(self.numer.clone() / self.denom.clone())
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            let one: T = One::one();
 | 
	
		
			
				|  |  | +            Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) /
 | 
	
		
			
				|  |  | +                                self.denom.clone())
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Rounds to the nearest integer. Rounds half-way cases away from zero.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn round(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        let zero: Ratio<T> = Zero::zero();
 | 
	
		
			
				|  |  | +        let one: T = One::one();
 | 
	
		
			
				|  |  | +        let two: T = one.clone() + one.clone();
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // Find unsigned fractional part of rational number
 | 
	
		
			
				|  |  | +        let mut fractional = self.fract();
 | 
	
		
			
				|  |  | +        if fractional < zero {
 | 
	
		
			
				|  |  | +            fractional = zero - fractional
 | 
	
		
			
				|  |  | +        };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // The algorithm compares the unsigned fractional part with 1/2, that
 | 
	
		
			
				|  |  | +        // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
 | 
	
		
			
				|  |  | +        // a >= (b/2)+1. This avoids overflow issues.
 | 
	
		
			
				|  |  | +        let half_or_larger = if fractional.denom().is_even() {
 | 
	
		
			
				|  |  | +            *fractional.numer() >= fractional.denom().clone() / two.clone()
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            *fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone()
 | 
	
		
			
				|  |  | +        };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if half_or_larger {
 | 
	
		
			
				|  |  | +            let one: Ratio<T> = One::one();
 | 
	
		
			
				|  |  | +            if *self >= Zero::zero() {
 | 
	
		
			
				|  |  | +                self.trunc() + one
 | 
	
		
			
				|  |  | +            } else {
 | 
	
		
			
				|  |  | +                self.trunc() - one
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            self.trunc()
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Rounds towards zero.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn trunc(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::from_integer(self.numer.clone() / self.denom.clone())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Returns the fractional part of a number.
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn fract(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer + PrimInt> Ratio<T> {
 | 
	
		
			
				|  |  | +    /// Raises the ratio to the power of an exponent
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    pub fn pow(&self, expon: i32) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        match expon.cmp(&0) {
 | 
	
		
			
				|  |  | +            cmp::Ordering::Equal => One::one(),
 | 
	
		
			
				|  |  | +            cmp::Ordering::Less => self.recip().pow(-expon),
 | 
	
		
			
				|  |  | +            cmp::Ordering::Greater => {
 | 
	
		
			
				|  |  | +                Ratio::new_raw(self.numer.pow(expon as u32), self.denom.pow(expon as u32))
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +impl Ratio<BigInt> {
 | 
	
		
			
				|  |  | +    /// Converts a float into a rational number.
 | 
	
		
			
				|  |  | +    pub fn from_float<T: Float>(f: T) -> Option<BigRational> {
 | 
	
		
			
				|  |  | +        if !f.is_finite() {
 | 
	
		
			
				|  |  | +            return None;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        let (mantissa, exponent, sign) = f.integer_decode();
 | 
	
		
			
				|  |  | +        let bigint_sign = if sign == 1 {
 | 
	
		
			
				|  |  | +            Sign::Plus
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            Sign::Minus
 | 
	
		
			
				|  |  | +        };
 | 
	
		
			
				|  |  | +        if exponent < 0 {
 | 
	
		
			
				|  |  | +            let one: BigInt = One::one();
 | 
	
		
			
				|  |  | +            let denom: BigInt = one << ((-exponent) as usize);
 | 
	
		
			
				|  |  | +            let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
 | 
	
		
			
				|  |  | +            Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
 | 
	
		
			
				|  |  | +            numer = numer << (exponent as usize);
 | 
	
		
			
				|  |  | +            Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer)))
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Comparisons
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy
 | 
	
		
			
				|  |  | +// for those multiplications to overflow fixed-size integers, so we need to take care.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> Ord for Ratio<T> {
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn cmp(&self, other: &Self) -> cmp::Ordering {
 | 
	
		
			
				|  |  | +        // With equal denominators, the numerators can be directly compared
 | 
	
		
			
				|  |  | +        if self.denom == other.denom {
 | 
	
		
			
				|  |  | +            let ord = self.numer.cmp(&other.numer);
 | 
	
		
			
				|  |  | +            return if self.denom < T::zero() {
 | 
	
		
			
				|  |  | +                ord.reverse()
 | 
	
		
			
				|  |  | +            } else {
 | 
	
		
			
				|  |  | +                ord
 | 
	
		
			
				|  |  | +            };
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // With equal numerators, the denominators can be inversely compared
 | 
	
		
			
				|  |  | +        if self.numer == other.numer {
 | 
	
		
			
				|  |  | +            let ord = self.denom.cmp(&other.denom);
 | 
	
		
			
				|  |  | +            return if self.numer < T::zero() {
 | 
	
		
			
				|  |  | +                ord
 | 
	
		
			
				|  |  | +            } else {
 | 
	
		
			
				|  |  | +                ord.reverse()
 | 
	
		
			
				|  |  | +            };
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // Unfortunately, we don't have CheckedMul to try.  That could sometimes avoid all the
 | 
	
		
			
				|  |  | +        // division below, or even always avoid it for BigInt and BigUint.
 | 
	
		
			
				|  |  | +        // FIXME- future breaking change to add Checked* to Integer?
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // Compare as floored integers and remainders
 | 
	
		
			
				|  |  | +        let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);
 | 
	
		
			
				|  |  | +        let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);
 | 
	
		
			
				|  |  | +        match self_int.cmp(&other_int) {
 | 
	
		
			
				|  |  | +            cmp::Ordering::Greater => cmp::Ordering::Greater,
 | 
	
		
			
				|  |  | +            cmp::Ordering::Less => cmp::Ordering::Less,
 | 
	
		
			
				|  |  | +            cmp::Ordering::Equal => {
 | 
	
		
			
				|  |  | +                match (self_rem.is_zero(), other_rem.is_zero()) {
 | 
	
		
			
				|  |  | +                    (true, true) => cmp::Ordering::Equal,
 | 
	
		
			
				|  |  | +                    (true, false) => cmp::Ordering::Less,
 | 
	
		
			
				|  |  | +                    (false, true) => cmp::Ordering::Greater,
 | 
	
		
			
				|  |  | +                    (false, false) => {
 | 
	
		
			
				|  |  | +                        // Compare the reciprocals of the remaining fractions in reverse
 | 
	
		
			
				|  |  | +                        let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);
 | 
	
		
			
				|  |  | +                        let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);
 | 
	
		
			
				|  |  | +                        self_recip.cmp(&other_recip).reverse()
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> PartialOrd for Ratio<T> {
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
 | 
	
		
			
				|  |  | +        Some(self.cmp(other))
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> PartialEq for Ratio<T> {
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn eq(&self, other: &Self) -> bool {
 | 
	
		
			
				|  |  | +        self.cmp(other) == cmp::Ordering::Equal
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> Eq for Ratio<T> {}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +macro_rules! forward_val_val_binop {
 | 
	
		
			
				|  |  | +    (impl $imp:ident, $method:ident) => {
 | 
	
		
			
				|  |  | +        impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {
 | 
	
		
			
				|  |  | +            type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            #[inline]
 | 
	
		
			
				|  |  | +            fn $method(self, other: Ratio<T>) -> Ratio<T> {
 | 
	
		
			
				|  |  | +                (&self).$method(&other)
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +macro_rules! forward_ref_val_binop {
 | 
	
		
			
				|  |  | +    (impl $imp:ident, $method:ident) => {
 | 
	
		
			
				|  |  | +        impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> where
 | 
	
		
			
				|  |  | +            T: Clone + Integer
 | 
	
		
			
				|  |  | +        {
 | 
	
		
			
				|  |  | +            type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            #[inline]
 | 
	
		
			
				|  |  | +            fn $method(self, other: Ratio<T>) -> Ratio<T> {
 | 
	
		
			
				|  |  | +                self.$method(&other)
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +macro_rules! forward_val_ref_binop {
 | 
	
		
			
				|  |  | +    (impl $imp:ident, $method:ident) => {
 | 
	
		
			
				|  |  | +        impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> where
 | 
	
		
			
				|  |  | +            T: Clone + Integer
 | 
	
		
			
				|  |  | +        {
 | 
	
		
			
				|  |  | +            type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            #[inline]
 | 
	
		
			
				|  |  | +            fn $method(self, other: &Ratio<T>) -> Ratio<T> {
 | 
	
		
			
				|  |  | +                (&self).$method(other)
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +macro_rules! forward_all_binop {
 | 
	
		
			
				|  |  | +    (impl $imp:ident, $method:ident) => {
 | 
	
		
			
				|  |  | +        forward_val_val_binop!(impl $imp, $method);
 | 
	
		
			
				|  |  | +        forward_ref_val_binop!(impl $imp, $method);
 | 
	
		
			
				|  |  | +        forward_val_ref_binop!(impl $imp, $method);
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Arithmetic
 | 
	
		
			
				|  |  | +forward_all_binop!(impl Mul, mul);
 | 
	
		
			
				|  |  | +// a/b * c/d = (a*c)/(b*d)
 | 
	
		
			
				|  |  | +impl<'a, 'b, T> Mul<&'b Ratio<T>> for &'a Ratio<T>
 | 
	
		
			
				|  |  | +    where T: Clone + Integer
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn mul(self, rhs: &Ratio<T>) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new(self.numer.clone() * rhs.numer.clone(),
 | 
	
		
			
				|  |  | +                   self.denom.clone() * rhs.denom.clone())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +forward_all_binop!(impl Div, div);
 | 
	
		
			
				|  |  | +// (a/b) / (c/d) = (a*d)/(b*c)
 | 
	
		
			
				|  |  | +impl<'a, 'b, T> Div<&'b Ratio<T>> for &'a Ratio<T>
 | 
	
		
			
				|  |  | +    where T: Clone + Integer
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn div(self, rhs: &Ratio<T>) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new(self.numer.clone() * rhs.denom.clone(),
 | 
	
		
			
				|  |  | +                   self.denom.clone() * rhs.numer.clone())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
 | 
	
		
			
				|  |  | +macro_rules! arith_impl {
 | 
	
		
			
				|  |  | +    (impl $imp:ident, $method:ident) => {
 | 
	
		
			
				|  |  | +        forward_all_binop!(impl $imp, $method);
 | 
	
		
			
				|  |  | +        impl<'a, 'b, T: Clone + Integer>
 | 
	
		
			
				|  |  | +            $imp<&'b Ratio<T>> for &'a Ratio<T> {
 | 
	
		
			
				|  |  | +            type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +            #[inline]
 | 
	
		
			
				|  |  | +            fn $method(self, rhs: &Ratio<T>) -> Ratio<T> {
 | 
	
		
			
				|  |  | +                Ratio::new((self.numer.clone() * rhs.denom.clone()).$method(self.denom.clone() * rhs.numer.clone()),
 | 
	
		
			
				|  |  | +                           self.denom.clone() * rhs.denom.clone())
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// a/b + c/d = (a*d + b*c)/(b*d)
 | 
	
		
			
				|  |  | +arith_impl!(impl Add, add);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// a/b - c/d = (a*d - b*c)/(b*d)
 | 
	
		
			
				|  |  | +arith_impl!(impl Sub, sub);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// a/b % c/d = (a*d % b*c)/(b*d)
 | 
	
		
			
				|  |  | +arith_impl!(impl Rem, rem);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T> Neg for Ratio<T>
 | 
	
		
			
				|  |  | +    where T: Clone + Integer + Neg<Output = T>
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn neg(self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new_raw(-self.numer, self.denom)
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<'a, T> Neg for &'a Ratio<T>
 | 
	
		
			
				|  |  | +    where T: Clone + Integer + Neg<Output = T>
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    type Output = Ratio<T>;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn neg(self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        -self.clone()
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Constants
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> Zero for Ratio<T> {
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn zero() -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new_raw(Zero::zero(), One::one())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn is_zero(&self) -> bool {
 | 
	
		
			
				|  |  | +        self.numer.is_zero()
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> One for Ratio<T> {
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn one() -> Ratio<T> {
 | 
	
		
			
				|  |  | +        Ratio::new_raw(One::one(), One::one())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer> Num for Ratio<T> {
 | 
	
		
			
				|  |  | +    type FromStrRadixErr = ParseRatioError;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Parses `numer/denom` where the numbers are in base `radix`.
 | 
	
		
			
				|  |  | +    fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
 | 
	
		
			
				|  |  | +        let split: Vec<&str> = s.splitn(2, '/').collect();
 | 
	
		
			
				|  |  | +        if split.len() < 2 {
 | 
	
		
			
				|  |  | +            Err(ParseRatioError { kind: RatioErrorKind::ParseError })
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            let a_result: Result<T, _> = T::from_str_radix(split[0], radix).map_err(|_| {
 | 
	
		
			
				|  |  | +                ParseRatioError { kind: RatioErrorKind::ParseError }
 | 
	
		
			
				|  |  | +            });
 | 
	
		
			
				|  |  | +            a_result.and_then(|a| {
 | 
	
		
			
				|  |  | +                let b_result: Result<T, _> = T::from_str_radix(split[1], radix).map_err(|_| {
 | 
	
		
			
				|  |  | +                    ParseRatioError { kind: RatioErrorKind::ParseError }
 | 
	
		
			
				|  |  | +                });
 | 
	
		
			
				|  |  | +                b_result.and_then(|b| {
 | 
	
		
			
				|  |  | +                    if b.is_zero() {
 | 
	
		
			
				|  |  | +                        Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator })
 | 
	
		
			
				|  |  | +                    } else {
 | 
	
		
			
				|  |  | +                        Ok(Ratio::new(a.clone(), b.clone()))
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                })
 | 
	
		
			
				|  |  | +            })
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn abs(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        if self.is_negative() {
 | 
	
		
			
				|  |  | +            -self.clone()
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            self.clone()
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        if *self <= *other {
 | 
	
		
			
				|  |  | +            Zero::zero()
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            self - other
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn signum(&self) -> Ratio<T> {
 | 
	
		
			
				|  |  | +        if self.is_positive() {
 | 
	
		
			
				|  |  | +            Self::one()
 | 
	
		
			
				|  |  | +        } else if self.is_zero() {
 | 
	
		
			
				|  |  | +            Self::zero()
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            -Self::one()
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn is_positive(&self) -> bool {
 | 
	
		
			
				|  |  | +        !self.is_negative()
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[inline]
 | 
	
		
			
				|  |  | +    fn is_negative(&self) -> bool {
 | 
	
		
			
				|  |  | +        self.numer.is_negative() ^ self.denom.is_negative()
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// String conversions
 | 
	
		
			
				|  |  | +impl<T> fmt::Display for Ratio<T>
 | 
	
		
			
				|  |  | +    where T: fmt::Display + Eq + One
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    /// Renders as `numer/denom`. If denom=1, renders as numer.
 | 
	
		
			
				|  |  | +    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | 
	
		
			
				|  |  | +        if self.denom == One::one() {
 | 
	
		
			
				|  |  | +            write!(f, "{}", self.numer)
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            write!(f, "{}/{}", self.numer, self.denom)
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
 | 
	
		
			
				|  |  | +    type Err = ParseRatioError;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    /// Parses `numer/denom` or just `numer`.
 | 
	
		
			
				|  |  | +    fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
 | 
	
		
			
				|  |  | +        let mut split = s.splitn(2, '/');
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        let n = try!(split.next().ok_or(ParseRatioError { kind: RatioErrorKind::ParseError }));
 | 
	
		
			
				|  |  | +        let num = try!(FromStr::from_str(n)
 | 
	
		
			
				|  |  | +                           .map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError }));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        let d = split.next().unwrap_or("1");
 | 
	
		
			
				|  |  | +        let den = try!(FromStr::from_str(d)
 | 
	
		
			
				|  |  | +                           .map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError }));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if Zero::is_zero(&den) {
 | 
	
		
			
				|  |  | +            Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator })
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            Ok(Ratio::new(num, den))
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(feature = "serde")]
 | 
	
		
			
				|  |  | +impl<T> serde::Serialize for Ratio<T>
 | 
	
		
			
				|  |  | +    where T: serde::Serialize + Clone + Integer + PartialOrd
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
 | 
	
		
			
				|  |  | +        where S: serde::Serializer
 | 
	
		
			
				|  |  | +    {
 | 
	
		
			
				|  |  | +        (self.numer(), self.denom()).serialize(serializer)
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(feature = "serde")]
 | 
	
		
			
				|  |  | +impl<T> serde::Deserialize for Ratio<T>
 | 
	
		
			
				|  |  | +    where T: serde::Deserialize + Clone + Integer + PartialOrd
 | 
	
		
			
				|  |  | +{
 | 
	
		
			
				|  |  | +    fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error>
 | 
	
		
			
				|  |  | +        where D: serde::Deserializer
 | 
	
		
			
				|  |  | +    {
 | 
	
		
			
				|  |  | +        let (numer, denom) = try!(serde::Deserialize::deserialize(deserializer));
 | 
	
		
			
				|  |  | +        if denom == Zero::zero() {
 | 
	
		
			
				|  |  | +            Err(serde::de::Error::invalid_value("denominator is zero"))
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +            Ok(Ratio::new_raw(numer, denom))
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// FIXME: Bubble up specific errors
 | 
	
		
			
				|  |  | +#[derive(Copy, Clone, Debug, PartialEq)]
 | 
	
		
			
				|  |  | +pub struct ParseRatioError {
 | 
	
		
			
				|  |  | +    kind: RatioErrorKind,
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[derive(Copy, Clone, Debug, PartialEq)]
 | 
	
		
			
				|  |  | +enum RatioErrorKind {
 | 
	
		
			
				|  |  | +    ParseError,
 | 
	
		
			
				|  |  | +    ZeroDenominator,
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl fmt::Display for ParseRatioError {
 | 
	
		
			
				|  |  | +    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 | 
	
		
			
				|  |  | +        self.description().fmt(f)
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl Error for ParseRatioError {
 | 
	
		
			
				|  |  | +    fn description(&self) -> &str {
 | 
	
		
			
				|  |  | +        self.kind.description()
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +impl RatioErrorKind {
 | 
	
		
			
				|  |  | +    fn description(&self) -> &'static str {
 | 
	
		
			
				|  |  | +        match *self {
 | 
	
		
			
				|  |  | +            RatioErrorKind::ParseError => "failed to parse integer",
 | 
	
		
			
				|  |  | +            RatioErrorKind::ZeroDenominator => "zero value denominator",
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(test)]
 | 
	
		
			
				|  |  | +fn hash<T: hash::Hash>(x: &T) -> u64 {
 | 
	
		
			
				|  |  | +    use std::hash::Hasher;
 | 
	
		
			
				|  |  | +    let mut hasher = hash::SipHasher::new();
 | 
	
		
			
				|  |  | +    x.hash(&mut hasher);
 | 
	
		
			
				|  |  | +    hasher.finish()
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#[cfg(test)]
 | 
	
		
			
				|  |  | +mod test {
 | 
	
		
			
				|  |  | +    use super::{Ratio, Rational};
 | 
	
		
			
				|  |  | +    #[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +    use super::BigRational;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    use std::str::FromStr;
 | 
	
		
			
				|  |  | +    use std::i32;
 | 
	
		
			
				|  |  | +    use traits::{Zero, One, Signed, FromPrimitive, Float};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    pub const _0: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: 0,
 | 
	
		
			
				|  |  | +        denom: 1,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _1: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: 1,
 | 
	
		
			
				|  |  | +        denom: 1,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _2: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: 2,
 | 
	
		
			
				|  |  | +        denom: 1,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _1_2: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: 1,
 | 
	
		
			
				|  |  | +        denom: 2,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _3_2: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: 3,
 | 
	
		
			
				|  |  | +        denom: 2,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _NEG1_2: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: -1,
 | 
	
		
			
				|  |  | +        denom: 2,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _1_3: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: 1,
 | 
	
		
			
				|  |  | +        denom: 3,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _NEG1_3: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: -1,
 | 
	
		
			
				|  |  | +        denom: 3,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _2_3: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: 2,
 | 
	
		
			
				|  |  | +        denom: 3,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +    pub const _NEG2_3: Rational = Ratio {
 | 
	
		
			
				|  |  | +        numer: -2,
 | 
	
		
			
				|  |  | +        denom: 3,
 | 
	
		
			
				|  |  | +    };
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +    pub fn to_big(n: Rational) -> BigRational {
 | 
	
		
			
				|  |  | +        Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(),
 | 
	
		
			
				|  |  | +                   FromPrimitive::from_isize(n.denom).unwrap())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    #[cfg(not(feature = "num-bigint"))]
 | 
	
		
			
				|  |  | +    pub fn to_big(n: Rational) -> Rational {
 | 
	
		
			
				|  |  | +        Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(),
 | 
	
		
			
				|  |  | +                   FromPrimitive::from_isize(n.denom).unwrap())
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_test_constants() {
 | 
	
		
			
				|  |  | +        // check our constants are what Ratio::new etc. would make.
 | 
	
		
			
				|  |  | +        assert_eq!(_0, Zero::zero());
 | 
	
		
			
				|  |  | +        assert_eq!(_1, One::one());
 | 
	
		
			
				|  |  | +        assert_eq!(_2, Ratio::from_integer(2));
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2, Ratio::new(1, 2));
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2, Ratio::new(3, 2));
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2, Ratio::new(-1, 2));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_new_reduce() {
 | 
	
		
			
				|  |  | +        let one22 = Ratio::new(2, 2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(one22, One::one());
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    #[should_panic]
 | 
	
		
			
				|  |  | +    fn test_new_zero() {
 | 
	
		
			
				|  |  | +        let _a = Ratio::new(1, 0);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_cmp() {
 | 
	
		
			
				|  |  | +        assert!(_0 == _0 && _1 == _1);
 | 
	
		
			
				|  |  | +        assert!(_0 != _1 && _1 != _0);
 | 
	
		
			
				|  |  | +        assert!(_0 < _1 && !(_1 < _0));
 | 
	
		
			
				|  |  | +        assert!(_1 > _0 && !(_0 > _1));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert!(_0 <= _0 && _1 <= _1);
 | 
	
		
			
				|  |  | +        assert!(_0 <= _1 && !(_1 <= _0));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert!(_0 >= _0 && _1 >= _1);
 | 
	
		
			
				|  |  | +        assert!(_1 >= _0 && !(_0 >= _1));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_cmp_overflow() {
 | 
	
		
			
				|  |  | +        use std::cmp::Ordering;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // issue #7 example:
 | 
	
		
			
				|  |  | +        let big = Ratio::new(128u8, 1);
 | 
	
		
			
				|  |  | +        let small = big.recip();
 | 
	
		
			
				|  |  | +        assert!(big > small);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // try a few that are closer together
 | 
	
		
			
				|  |  | +        // (some matching numer, some matching denom, some neither)
 | 
	
		
			
				|  |  | +        let ratios = vec![
 | 
	
		
			
				|  |  | +            Ratio::new(125_i8, 127_i8),
 | 
	
		
			
				|  |  | +            Ratio::new(63_i8, 64_i8),
 | 
	
		
			
				|  |  | +            Ratio::new(124_i8, 125_i8),
 | 
	
		
			
				|  |  | +            Ratio::new(125_i8, 126_i8),
 | 
	
		
			
				|  |  | +            Ratio::new(126_i8, 127_i8),
 | 
	
		
			
				|  |  | +            Ratio::new(127_i8, 126_i8),
 | 
	
		
			
				|  |  | +        ];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {
 | 
	
		
			
				|  |  | +            println!("comparing {} and {}", a, b);
 | 
	
		
			
				|  |  | +            assert_eq!(a.cmp(&b), ord);
 | 
	
		
			
				|  |  | +            assert_eq!(b.cmp(&a), ord.reverse());
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        for (i, &a) in ratios.iter().enumerate() {
 | 
	
		
			
				|  |  | +            check_cmp(a, a, Ordering::Equal);
 | 
	
		
			
				|  |  | +            check_cmp(-a, a, Ordering::Less);
 | 
	
		
			
				|  |  | +            for &b in &ratios[i + 1..] {
 | 
	
		
			
				|  |  | +                check_cmp(a, b, Ordering::Less);
 | 
	
		
			
				|  |  | +                check_cmp(-a, -b, Ordering::Greater);
 | 
	
		
			
				|  |  | +                check_cmp(a.recip(), b.recip(), Ordering::Greater);
 | 
	
		
			
				|  |  | +                check_cmp(-a.recip(), -b.recip(), Ordering::Less);
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_to_integer() {
 | 
	
		
			
				|  |  | +        assert_eq!(_0.to_integer(), 0);
 | 
	
		
			
				|  |  | +        assert_eq!(_1.to_integer(), 1);
 | 
	
		
			
				|  |  | +        assert_eq!(_2.to_integer(), 2);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.to_integer(), 0);
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.to_integer(), 1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.to_integer(), 0);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_numer() {
 | 
	
		
			
				|  |  | +        assert_eq!(_0.numer(), &0);
 | 
	
		
			
				|  |  | +        assert_eq!(_1.numer(), &1);
 | 
	
		
			
				|  |  | +        assert_eq!(_2.numer(), &2);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.numer(), &1);
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.numer(), &3);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.numer(), &(-1));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_denom() {
 | 
	
		
			
				|  |  | +        assert_eq!(_0.denom(), &1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1.denom(), &1);
 | 
	
		
			
				|  |  | +        assert_eq!(_2.denom(), &1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.denom(), &2);
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.denom(), &2);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.denom(), &2);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_is_integer() {
 | 
	
		
			
				|  |  | +        assert!(_0.is_integer());
 | 
	
		
			
				|  |  | +        assert!(_1.is_integer());
 | 
	
		
			
				|  |  | +        assert!(_2.is_integer());
 | 
	
		
			
				|  |  | +        assert!(!_1_2.is_integer());
 | 
	
		
			
				|  |  | +        assert!(!_3_2.is_integer());
 | 
	
		
			
				|  |  | +        assert!(!_NEG1_2.is_integer());
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_show() {
 | 
	
		
			
				|  |  | +        assert_eq!(format!("{}", _2), "2".to_string());
 | 
	
		
			
				|  |  | +        assert_eq!(format!("{}", _1_2), "1/2".to_string());
 | 
	
		
			
				|  |  | +        assert_eq!(format!("{}", _0), "0".to_string());
 | 
	
		
			
				|  |  | +        assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string());
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    mod arith {
 | 
	
		
			
				|  |  | +        use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big};
 | 
	
		
			
				|  |  | +        use super::super::{Ratio, Rational};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        fn test_add() {
 | 
	
		
			
				|  |  | +            fn test(a: Rational, b: Rational, c: Rational) {
 | 
	
		
			
				|  |  | +                assert_eq!(a + b, c);
 | 
	
		
			
				|  |  | +                assert_eq!(to_big(a) + to_big(b), to_big(c));
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            test(_1, _1_2, _3_2);
 | 
	
		
			
				|  |  | +            test(_1, _1, _2);
 | 
	
		
			
				|  |  | +            test(_1_2, _3_2, _2);
 | 
	
		
			
				|  |  | +            test(_1_2, _NEG1_2, _0);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        fn test_sub() {
 | 
	
		
			
				|  |  | +            fn test(a: Rational, b: Rational, c: Rational) {
 | 
	
		
			
				|  |  | +                assert_eq!(a - b, c);
 | 
	
		
			
				|  |  | +                assert_eq!(to_big(a) - to_big(b), to_big(c))
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            test(_1, _1_2, _1_2);
 | 
	
		
			
				|  |  | +            test(_3_2, _1_2, _1);
 | 
	
		
			
				|  |  | +            test(_1, _NEG1_2, _3_2);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        fn test_mul() {
 | 
	
		
			
				|  |  | +            fn test(a: Rational, b: Rational, c: Rational) {
 | 
	
		
			
				|  |  | +                assert_eq!(a * b, c);
 | 
	
		
			
				|  |  | +                assert_eq!(to_big(a) * to_big(b), to_big(c))
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            test(_1, _1_2, _1_2);
 | 
	
		
			
				|  |  | +            test(_1_2, _3_2, Ratio::new(3, 4));
 | 
	
		
			
				|  |  | +            test(_1_2, _NEG1_2, Ratio::new(-1, 4));
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        fn test_div() {
 | 
	
		
			
				|  |  | +            fn test(a: Rational, b: Rational, c: Rational) {
 | 
	
		
			
				|  |  | +                assert_eq!(a / b, c);
 | 
	
		
			
				|  |  | +                assert_eq!(to_big(a) / to_big(b), to_big(c))
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            test(_1, _1_2, _2);
 | 
	
		
			
				|  |  | +            test(_3_2, _1_2, _1 + _2);
 | 
	
		
			
				|  |  | +            test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        fn test_rem() {
 | 
	
		
			
				|  |  | +            fn test(a: Rational, b: Rational, c: Rational) {
 | 
	
		
			
				|  |  | +                assert_eq!(a % b, c);
 | 
	
		
			
				|  |  | +                assert_eq!(to_big(a) % to_big(b), to_big(c))
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            test(_3_2, _1, _1_2);
 | 
	
		
			
				|  |  | +            test(_2, _NEG1_2, _0);
 | 
	
		
			
				|  |  | +            test(_1_2, _2, _1_2);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        fn test_neg() {
 | 
	
		
			
				|  |  | +            fn test(a: Rational, b: Rational) {
 | 
	
		
			
				|  |  | +                assert_eq!(-a, b);
 | 
	
		
			
				|  |  | +                assert_eq!(-to_big(a), to_big(b))
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            test(_0, _0);
 | 
	
		
			
				|  |  | +            test(_1_2, _NEG1_2);
 | 
	
		
			
				|  |  | +            test(-_1, _1);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        fn test_zero() {
 | 
	
		
			
				|  |  | +            assert_eq!(_0 + _0, _0);
 | 
	
		
			
				|  |  | +            assert_eq!(_0 * _0, _0);
 | 
	
		
			
				|  |  | +            assert_eq!(_0 * _1, _0);
 | 
	
		
			
				|  |  | +            assert_eq!(_0 / _NEG1_2, _0);
 | 
	
		
			
				|  |  | +            assert_eq!(_0 - _0, _0);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        #[test]
 | 
	
		
			
				|  |  | +        #[should_panic]
 | 
	
		
			
				|  |  | +        fn test_div_0() {
 | 
	
		
			
				|  |  | +            let _a = _1 / _0;
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_round() {
 | 
	
		
			
				|  |  | +        assert_eq!(_1_3.ceil(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_3.floor(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_3.round(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_3.trunc(), _0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_3.ceil(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_3.floor(), -_1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_3.round(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_3.trunc(), _0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(_2_3.ceil(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_2_3.floor(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_2_3.round(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_2_3.trunc(), _0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG2_3.ceil(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG2_3.floor(), -_1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG2_3.round(), -_1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG2_3.trunc(), _0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.ceil(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.floor(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.round(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.trunc(), _0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.ceil(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.floor(), -_1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.round(), -_1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.trunc(), _0);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(_1.ceil(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1.floor(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1.round(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1.trunc(), _1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // Overflow checks
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        let _neg1 = Ratio::from_integer(-1);
 | 
	
		
			
				|  |  | +        let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1);
 | 
	
		
			
				|  |  | +        let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX);
 | 
	
		
			
				|  |  | +        let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1);
 | 
	
		
			
				|  |  | +        let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2);
 | 
	
		
			
				|  |  | +        let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX);
 | 
	
		
			
				|  |  | +        let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2);
 | 
	
		
			
				|  |  | +        let _large_rat7 = Ratio::new(1, i32::MIN + 1);
 | 
	
		
			
				|  |  | +        let _large_rat8 = Ratio::new(1, i32::MAX);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat1.round(), One::one());
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat2.round(), One::one());
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat3.round(), One::one());
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat4.round(), One::one());
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat5.round(), _neg1);
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat6.round(), _neg1);
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat7.round(), Zero::zero());
 | 
	
		
			
				|  |  | +        assert_eq!(_large_rat8.round(), Zero::zero());
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_fract() {
 | 
	
		
			
				|  |  | +        assert_eq!(_1.fract(), _0);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.fract(), _NEG1_2);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.fract(), _1_2);
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.fract(), _1_2);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_recip() {
 | 
	
		
			
				|  |  | +        assert_eq!(_1 * _1.recip(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_2 * _2.recip(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2 * _1_2.recip(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2 * _3_2.recip(), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_pow() {
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.pow(2), Ratio::new(1, 4));
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.pow(-2), Ratio::new(4, 1));
 | 
	
		
			
				|  |  | +        assert_eq!(_1.pow(1), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.pow(2), _1_2.pow(2));
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.pow(3), -_1_2.pow(3));
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.pow(0), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.pow(-1), _3_2.recip());
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.pow(3), Ratio::new(27, 8));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_to_from_str() {
 | 
	
		
			
				|  |  | +        fn test(r: Rational, s: String) {
 | 
	
		
			
				|  |  | +            assert_eq!(FromStr::from_str(&s), Ok(r));
 | 
	
		
			
				|  |  | +            assert_eq!(r.to_string(), s);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        test(_1, "1".to_string());
 | 
	
		
			
				|  |  | +        test(_0, "0".to_string());
 | 
	
		
			
				|  |  | +        test(_1_2, "1/2".to_string());
 | 
	
		
			
				|  |  | +        test(_3_2, "3/2".to_string());
 | 
	
		
			
				|  |  | +        test(_2, "2".to_string());
 | 
	
		
			
				|  |  | +        test(_NEG1_2, "-1/2".to_string());
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_from_str_fail() {
 | 
	
		
			
				|  |  | +        fn test(s: &str) {
 | 
	
		
			
				|  |  | +            let rational: Result<Rational, _> = FromStr::from_str(s);
 | 
	
		
			
				|  |  | +            assert!(rational.is_err());
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"];
 | 
	
		
			
				|  |  | +        for &s in xs.iter() {
 | 
	
		
			
				|  |  | +            test(s);
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_from_float() {
 | 
	
		
			
				|  |  | +        fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
 | 
	
		
			
				|  |  | +            let ratio: BigRational = Ratio::from_float(given).unwrap();
 | 
	
		
			
				|  |  | +            assert_eq!(ratio,
 | 
	
		
			
				|  |  | +                       Ratio::new(FromStr::from_str(numer).unwrap(),
 | 
	
		
			
				|  |  | +                                  FromStr::from_str(denom).unwrap()));
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // f32
 | 
	
		
			
				|  |  | +        test(3.14159265359f32, ("13176795", "4194304"));
 | 
	
		
			
				|  |  | +        test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
 | 
	
		
			
				|  |  | +        test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
 | 
	
		
			
				|  |  | +        test(1.0 / 2f32.powf(100.),
 | 
	
		
			
				|  |  | +             ("1", "1267650600228229401496703205376"));
 | 
	
		
			
				|  |  | +        test(684729.48391f32, ("1369459", "2"));
 | 
	
		
			
				|  |  | +        test(-8573.5918555f32, ("-4389679", "512"));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        // f64
 | 
	
		
			
				|  |  | +        test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
 | 
	
		
			
				|  |  | +        test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
 | 
	
		
			
				|  |  | +        test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
 | 
	
		
			
				|  |  | +        test(684729.48391f64, ("367611342500051", "536870912"));
 | 
	
		
			
				|  |  | +        test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
 | 
	
		
			
				|  |  | +        test(1.0 / 2f64.powf(100.),
 | 
	
		
			
				|  |  | +             ("1", "1267650600228229401496703205376"));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[cfg(feature = "num-bigint")]
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_from_float_fail() {
 | 
	
		
			
				|  |  | +        use std::{f32, f64};
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        assert_eq!(Ratio::from_float(f32::NAN), None);
 | 
	
		
			
				|  |  | +        assert_eq!(Ratio::from_float(f32::INFINITY), None);
 | 
	
		
			
				|  |  | +        assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
 | 
	
		
			
				|  |  | +        assert_eq!(Ratio::from_float(f64::NAN), None);
 | 
	
		
			
				|  |  | +        assert_eq!(Ratio::from_float(f64::INFINITY), None);
 | 
	
		
			
				|  |  | +        assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_signed() {
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.abs(), _1_2);
 | 
	
		
			
				|  |  | +        assert_eq!(_3_2.abs_sub(&_1_2), _1);
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
 | 
	
		
			
				|  |  | +        assert_eq!(_1_2.signum(), One::one());
 | 
	
		
			
				|  |  | +        assert_eq!(_NEG1_2.signum(), -<Ratio<isize>>::one());
 | 
	
		
			
				|  |  | +        assert!(_NEG1_2.is_negative());
 | 
	
		
			
				|  |  | +        assert!(!_NEG1_2.is_positive());
 | 
	
		
			
				|  |  | +        assert!(!_1_2.is_negative());
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #[test]
 | 
	
		
			
				|  |  | +    fn test_hash() {
 | 
	
		
			
				|  |  | +        assert!(::hash(&_0) != ::hash(&_1));
 | 
	
		
			
				|  |  | +        assert!(::hash(&_0) != ::hash(&_3_2));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +}
 |