|
@@ -667,14 +667,91 @@ impl_integer_for_usize!(u32, test_integer_u32);
|
|
|
impl_integer_for_usize!(u64, test_integer_u64);
|
|
|
impl_integer_for_usize!(usize, test_integer_usize);
|
|
|
|
|
|
+/// An iterator over binomial coefficients.
|
|
|
+pub struct IterBinomial<T> {
|
|
|
+ a: T,
|
|
|
+ n: T,
|
|
|
+ k: T,
|
|
|
+}
|
|
|
+
|
|
|
+impl<T> IterBinomial<T>
|
|
|
+ where T: Integer,
|
|
|
+{
|
|
|
+ /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
|
|
|
+ ///
|
|
|
+ /// Note that this might overflow, depending on `T`. For the primitive
|
|
|
+ /// integer types, the following n are the largest ones for which there will
|
|
|
+ /// be no overflow:
|
|
|
+ ///
|
|
|
+ /// type | n
|
|
|
+ /// -----|---
|
|
|
+ /// u8 | 10
|
|
|
+ /// i8 | 9
|
|
|
+ /// u16 | 18
|
|
|
+ /// i16 | 17
|
|
|
+ /// u32 | 34
|
|
|
+ /// i32 | 33
|
|
|
+ /// u64 | 67
|
|
|
+ /// i64 | 66
|
|
|
+ ///
|
|
|
+ /// For larger n, `T` should be a bigint type.
|
|
|
+ pub fn new(n: T) -> IterBinomial<T> {
|
|
|
+ IterBinomial {
|
|
|
+ k: T::zero(), a: T::one(), n: n
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+impl<T> Iterator for IterBinomial<T>
|
|
|
+ where T: Integer + Clone
|
|
|
+{
|
|
|
+ type Item = T;
|
|
|
+
|
|
|
+ fn next(&mut self) -> Option<T> {
|
|
|
+ if self.k > self.n {
|
|
|
+ return None;
|
|
|
+ }
|
|
|
+ self.a = if !self.k.is_zero() {
|
|
|
+ multiply_and_divide(
|
|
|
+ self.a.clone(),
|
|
|
+ self.n.clone() - self.k.clone() + T::one(),
|
|
|
+ self.k.clone()
|
|
|
+ )
|
|
|
+ } else {
|
|
|
+ T::one()
|
|
|
+ };
|
|
|
+ self.k = self.k.clone() + T::one();
|
|
|
+ Some(self.a.clone())
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
/// Calculate r * a / b, avoiding overflows and fractions.
|
|
|
+///
|
|
|
+/// Assumes that b divides r * a evenly.
|
|
|
fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
|
|
|
// See http://blog.plover.com/math/choose-2.html for the idea.
|
|
|
let g = gcd(r.clone(), b.clone());
|
|
|
- (r/g.clone() * a) / (b/g)
|
|
|
+ r/g.clone() * (a / (b/g))
|
|
|
}
|
|
|
|
|
|
/// Calculate the binomial coefficient.
|
|
|
+///
|
|
|
+/// Note that this might overflow, depending on `T`. For the primitive integer
|
|
|
+/// types, the following n are the largest ones possible such that there will
|
|
|
+/// be no overflow for any k:
|
|
|
+///
|
|
|
+/// type | n
|
|
|
+/// -----|---
|
|
|
+/// u8 | 10
|
|
|
+/// i8 | 9
|
|
|
+/// u16 | 18
|
|
|
+/// i16 | 17
|
|
|
+/// u32 | 34
|
|
|
+/// i32 | 33
|
|
|
+/// u64 | 67
|
|
|
+/// i64 | 66
|
|
|
+///
|
|
|
+/// For larger n, consider using a bigint type for `T`.
|
|
|
pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
|
|
|
// See http://blog.plover.com/math/choose.html for the idea.
|
|
|
if k > n {
|
|
@@ -737,6 +814,49 @@ fn test_lcm_overflow() {
|
|
|
check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000);
|
|
|
}
|
|
|
|
|
|
+#[test]
|
|
|
+fn test_iter_binomial() {
|
|
|
+ macro_rules! check_simple {
|
|
|
+ ($t:ty) => { {
|
|
|
+ let n: $t = 3;
|
|
|
+ let c: Vec<_> = IterBinomial::new(n).collect();
|
|
|
+ let expected = vec![1, 3, 3, 1];
|
|
|
+ assert_eq!(c, expected);
|
|
|
+ } }
|
|
|
+ }
|
|
|
+
|
|
|
+ check_simple!(u8);
|
|
|
+ check_simple!(i8);
|
|
|
+ check_simple!(u16);
|
|
|
+ check_simple!(i16);
|
|
|
+ check_simple!(u32);
|
|
|
+ check_simple!(i32);
|
|
|
+ check_simple!(u64);
|
|
|
+ check_simple!(i64);
|
|
|
+
|
|
|
+ macro_rules! check_binomial {
|
|
|
+ ($t:ty, $n:expr) => { {
|
|
|
+ let n: $t = $n;
|
|
|
+ let c: Vec<_> = IterBinomial::new(n).collect();
|
|
|
+ let mut k: $t = 0;
|
|
|
+ for b in c {
|
|
|
+ assert_eq!(b, binomial(n, k));
|
|
|
+ k += 1;
|
|
|
+ }
|
|
|
+ } }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Check the largest n for which there is no overflow.
|
|
|
+ check_binomial!(u8, 10);
|
|
|
+ check_binomial!(i8, 9);
|
|
|
+ check_binomial!(u16, 18);
|
|
|
+ check_binomial!(i16, 17);
|
|
|
+ check_binomial!(u32, 34);
|
|
|
+ check_binomial!(i32, 33);
|
|
|
+ check_binomial!(u64, 67);
|
|
|
+ check_binomial!(i64, 66);
|
|
|
+}
|
|
|
+
|
|
|
#[test]
|
|
|
fn test_binomial() {
|
|
|
macro_rules! check {
|