12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351 |
- use core::mem;
- use core::num::FpCategory;
- use core::ops::{Add, Div, Neg};
- use core::f32;
- use core::f64;
- use {Num, NumCast, ToPrimitive};
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- use libm;
- /// Generic trait for floating point numbers that works with `no_std`.
- ///
- /// This trait implements a subset of the `Float` trait.
- pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy {
- /// Returns positive infinity.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::infinity() == x);
- /// }
- ///
- /// check(f32::INFINITY);
- /// check(f64::INFINITY);
- /// ```
- fn infinity() -> Self;
- /// Returns negative infinity.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::neg_infinity() == x);
- /// }
- ///
- /// check(f32::NEG_INFINITY);
- /// check(f64::NEG_INFINITY);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- ///
- /// fn check<T: FloatCore>() {
- /// let n = T::nan();
- /// assert!(n != n);
- /// }
- ///
- /// check::<f32>();
- /// check::<f64>();
- /// ```
- fn nan() -> Self;
- /// Returns `-0.0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(n: T) {
- /// let z = T::neg_zero();
- /// assert!(z.is_zero());
- /// assert!(T::one() / z == n);
- /// }
- ///
- /// check(f32::NEG_INFINITY);
- /// check(f64::NEG_INFINITY);
- /// ```
- fn neg_zero() -> Self;
- /// Returns the smallest finite value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::min_value() == x);
- /// }
- ///
- /// check(f32::MIN);
- /// check(f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::min_positive_value() == x);
- /// }
- ///
- /// check(f32::MIN_POSITIVE);
- /// check(f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns epsilon, a small positive value.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::epsilon() == x);
- /// }
- ///
- /// check(f32::EPSILON);
- /// check(f64::EPSILON);
- /// ```
- fn epsilon() -> Self;
- /// Returns the largest finite value that this type can represent.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T) {
- /// assert!(T::max_value() == x);
- /// }
- ///
- /// check(f32::MAX);
- /// check(f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns `true` if the number is NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_nan() == p);
- /// }
- ///
- /// check(f32::NAN, true);
- /// check(f32::INFINITY, false);
- /// check(f64::NAN, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_nan(self) -> bool {
- self != self
- }
- /// Returns `true` if the number is infinite.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_infinite() == p);
- /// }
- ///
- /// check(f32::INFINITY, true);
- /// check(f32::NEG_INFINITY, true);
- /// check(f32::NAN, false);
- /// check(f64::INFINITY, true);
- /// check(f64::NEG_INFINITY, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_infinite(self) -> bool {
- self == Self::infinity() || self == Self::neg_infinity()
- }
- /// Returns `true` if the number is neither infinite or NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_finite() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, true);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(f64::NAN, false);
- /// ```
- #[inline]
- fn is_finite(self) -> bool {
- !(self.is_nan() || self.is_infinite())
- }
- /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_normal() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, true);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(0.0f64, false);
- /// ```
- #[inline]
- fn is_normal(self) -> bool {
- self.classify() == FpCategory::Normal
- }
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- /// use std::num::FpCategory;
- ///
- /// fn check<T: FloatCore>(x: T, c: FpCategory) {
- /// assert!(x.classify() == c);
- /// }
- ///
- /// check(f32::INFINITY, FpCategory::Infinite);
- /// check(f32::MAX, FpCategory::Normal);
- /// check(f64::NAN, FpCategory::Nan);
- /// check(f64::MIN_POSITIVE, FpCategory::Normal);
- /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal);
- /// check(0.0f64, FpCategory::Zero);
- /// ```
- fn classify(self) -> FpCategory;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.floor() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 0.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 1.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -1.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -2.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn floor(self) -> Self {
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self < Self::zero() {
- self - f - Self::one()
- } else {
- self - f
- }
- }
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.ceil() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 1.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 2.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -0.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn ceil(self) -> Self {
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self > Self::zero() {
- self - f + Self::one()
- } else {
- self - f
- }
- }
- /// Returns the nearest integer to a number. Round half-way cases away from `0.0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.round() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.4f32, 0.0);
- /// check(0.5f32, 1.0);
- /// check(0.6f32, 1.0);
- /// check(-0.4f64, 0.0);
- /// check(-0.5f64, -1.0);
- /// check(-0.6f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn round(self) -> Self {
- let one = Self::one();
- let h = Self::from(0.5).expect("Unable to cast from 0.5");
- let f = self.fract();
- if f.is_nan() || f.is_zero() {
- self
- } else if self > Self::zero() {
- if f < h {
- self - f
- } else {
- self - f + one
- }
- } else {
- if -f < h {
- self - f
- } else {
- self - f - one
- }
- }
- }
- /// Return the integer part of a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.trunc() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(0.9f32, 0.0);
- /// check(1.0f32, 1.0);
- /// check(1.1f32, 1.0);
- /// check(-0.0f64, 0.0);
- /// check(-0.9f64, -0.0);
- /// check(-1.0f64, -1.0);
- /// check(-1.1f64, -1.0);
- /// check(f64::MIN, f64::MIN);
- /// ```
- #[inline]
- fn trunc(self) -> Self {
- let f = self.fract();
- if f.is_nan() {
- self
- } else {
- self - f
- }
- }
- /// Returns the fractional part of a number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.fract() == y);
- /// }
- ///
- /// check(f32::MAX, 0.0);
- /// check(0.75f32, 0.75);
- /// check(1.0f32, 0.0);
- /// check(1.25f32, 0.25);
- /// check(-0.0f64, 0.0);
- /// check(-0.75f64, -0.75);
- /// check(-1.0f64, 0.0);
- /// check(-1.25f64, -0.25);
- /// check(f64::MIN, 0.0);
- /// ```
- #[inline]
- fn fract(self) -> Self {
- if self.is_zero() {
- Self::zero()
- } else {
- self % Self::one()
- }
- }
- /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the
- /// number is `FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.abs() == y);
- /// }
- ///
- /// check(f32::INFINITY, f32::INFINITY);
- /// check(1.0f32, 1.0);
- /// check(0.0f64, 0.0);
- /// check(-0.0f64, 0.0);
- /// check(-1.0f64, 1.0);
- /// check(f64::MIN, f64::MAX);
- /// ```
- #[inline]
- fn abs(self) -> Self {
- if self.is_sign_positive() {
- return self;
- }
- if self.is_sign_negative() {
- return -self;
- }
- Self::nan()
- }
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()`
- /// - `FloatCore::nan()` if the number is `FloatCore::nan()`
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.signum() == y);
- /// }
- ///
- /// check(f32::INFINITY, 1.0);
- /// check(3.0f32, 1.0);
- /// check(0.0f32, 1.0);
- /// check(-0.0f64, -1.0);
- /// check(-3.0f64, -1.0);
- /// check(f64::MIN, -1.0);
- /// ```
- #[inline]
- fn signum(self) -> Self {
- if self.is_nan() {
- Self::nan()
- } else if self.is_sign_negative() {
- -Self::one()
- } else {
- Self::one()
- }
- }
- /// Returns `true` if `self` is positive, including `+0.0` and
- /// `FloatCore::infinity()`, and since Rust 1.20 also
- /// `FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_sign_positive() == p);
- /// }
- ///
- /// check(f32::INFINITY, true);
- /// check(f32::MAX, true);
- /// check(0.0f32, true);
- /// check(-0.0f64, false);
- /// check(f64::NEG_INFINITY, false);
- /// check(f64::MIN_POSITIVE, true);
- /// check(-f64::NAN, false);
- /// ```
- #[inline]
- fn is_sign_positive(self) -> bool {
- !self.is_sign_negative()
- }
- /// Returns `true` if `self` is negative, including `-0.0` and
- /// `FloatCore::neg_infinity()`, and since Rust 1.20 also
- /// `-FloatCore::nan()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, p: bool) {
- /// assert!(x.is_sign_negative() == p);
- /// }
- ///
- /// check(f32::INFINITY, false);
- /// check(f32::MAX, false);
- /// check(0.0f32, false);
- /// check(-0.0f64, true);
- /// check(f64::NEG_INFINITY, true);
- /// check(f64::MIN_POSITIVE, false);
- /// check(f64::NAN, false);
- /// ```
- #[inline]
- fn is_sign_negative(self) -> bool {
- let (_, _, sign) = self.integer_decode();
- sign < 0
- }
- /// Returns the minimum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T, min: T) {
- /// assert!(x.min(y) == min);
- /// }
- ///
- /// check(1.0f32, 2.0, 1.0);
- /// check(f32::NAN, 2.0, 2.0);
- /// check(1.0f64, -2.0, -2.0);
- /// check(1.0f64, f64::NAN, 1.0);
- /// ```
- #[inline]
- fn min(self, other: Self) -> Self {
- if self.is_nan() {
- return other;
- }
- if other.is_nan() {
- return self;
- }
- if self < other {
- self
- } else {
- other
- }
- }
- /// Returns the maximum of the two numbers.
- ///
- /// If one of the arguments is NaN, then the other argument is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T, max: T) {
- /// assert!(x.max(y) == max);
- /// }
- ///
- /// check(1.0f32, 2.0, 2.0);
- /// check(1.0f32, f32::NAN, 1.0);
- /// check(-1.0f64, 2.0, 2.0);
- /// check(-1.0f64, f64::NAN, -1.0);
- /// ```
- #[inline]
- fn max(self, other: Self) -> Self {
- if self.is_nan() {
- return other;
- }
- if other.is_nan() {
- return self;
- }
- if self > other {
- self
- } else {
- other
- }
- }
- /// Returns the reciprocal (multiplicative inverse) of the number.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, y: T) {
- /// assert!(x.recip() == y);
- /// assert!(y.recip() == x);
- /// }
- ///
- /// check(f32::INFINITY, 0.0);
- /// check(2.0f32, 0.5);
- /// check(-0.25f64, -4.0);
- /// check(-0.0f64, f64::NEG_INFINITY);
- /// ```
- #[inline]
- fn recip(self) -> Self {
- Self::one() / self
- }
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- ///
- /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) {
- /// assert!(x.powi(exp) == powi);
- /// }
- ///
- /// check(9.0f32, 2, 81.0);
- /// check(1.0f32, -2, 1.0);
- /// check(10.0f64, 20, 1e20);
- /// check(4.0f64, -2, 0.0625);
- /// check(-1.0f64, std::i32::MIN, 1.0);
- /// ```
- #[inline]
- fn powi(mut self, mut exp: i32) -> Self {
- if exp < 0 {
- exp = exp.wrapping_neg();
- self = self.recip();
- }
- // It should always be possible to convert a positive `i32` to a `usize`.
- // Note, `i32::MIN` will wrap and still be negative, so we need to convert
- // to `u32` without sign-extension before growing to `usize`.
- super::pow(self, (exp as u32).to_usize().unwrap())
- }
- /// Converts to degrees, assuming the number is in radians.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(rad: T, deg: T) {
- /// assert!(rad.to_degrees() == deg);
- /// }
- ///
- /// check(0.0f32, 0.0);
- /// check(f32::consts::PI, 180.0);
- /// check(f64::consts::FRAC_PI_4, 45.0);
- /// check(f64::INFINITY, f64::INFINITY);
- /// ```
- fn to_degrees(self) -> Self;
- /// Converts to radians, assuming the number is in degrees.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(deg: T, rad: T) {
- /// assert!(deg.to_radians() == rad);
- /// }
- ///
- /// check(0.0f32, 0.0);
- /// check(180.0, f32::consts::PI);
- /// check(45.0, f64::consts::FRAC_PI_4);
- /// check(f64::INFINITY, f64::INFINITY);
- /// ```
- fn to_radians(self) -> Self;
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::float::FloatCore;
- /// use std::{f32, f64};
- ///
- /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) {
- /// let (mantissa, exponent, sign) = x.integer_decode();
- /// assert_eq!(mantissa, m);
- /// assert_eq!(exponent, e);
- /// assert_eq!(sign, s);
- /// }
- ///
- /// check(2.0f32, 1 << 23, -22, 1);
- /// check(-2.0f32, 1 << 23, -22, -1);
- /// check(f32::INFINITY, 1 << 23, 105, 1);
- /// check(f64::NEG_INFINITY, 1 << 52, 972, -1);
- /// ```
- fn integer_decode(self) -> (u64, i16, i8);
- }
- impl FloatCore for f32 {
- constant! {
- infinity() -> f32::INFINITY;
- neg_infinity() -> f32::NEG_INFINITY;
- nan() -> f32::NAN;
- neg_zero() -> -0.0;
- min_value() -> f32::MIN;
- min_positive_value() -> f32::MIN_POSITIVE;
- epsilon() -> f32::EPSILON;
- max_value() -> f32::MAX;
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- integer_decode_f32(self)
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn classify(self) -> FpCategory {
- const EXP_MASK: u32 = 0x7f800000;
- const MAN_MASK: u32 = 0x007fffff;
- // Safety: this identical to the implementation of f32::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u32 = unsafe { mem::transmute(self) };
- match (bits & MAN_MASK, bits & EXP_MASK) {
- (0, 0) => FpCategory::Zero,
- (_, 0) => FpCategory::Subnormal,
- (0, EXP_MASK) => FpCategory::Infinite,
- (_, EXP_MASK) => FpCategory::Nan,
- _ => FpCategory::Normal,
- }
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn is_sign_negative(self) -> bool {
- const SIGN_MASK: u32 = 0x80000000;
- // Safety: this identical to the implementation of f32::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u32 = unsafe { mem::transmute(self) };
- bits & SIGN_MASK != 0
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_degrees(self) -> Self {
- // Use a constant for better precision.
- const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
- self * PIS_IN_180
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_radians(self) -> Self {
- self * (f32::consts::PI / 180.0)
- }
- #[cfg(feature = "std")]
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::min(self, other: Self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::recip(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- }
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- forward! {
- libm::floorf as floor(self) -> Self;
- libm::ceilf as ceil(self) -> Self;
- libm::roundf as round(self) -> Self;
- libm::truncf as trunc(self) -> Self;
- libm::fabsf as abs(self) -> Self;
- libm::fminf as min(self, other: Self) -> Self;
- libm::fmaxf as max(self, other: Self) -> Self;
- }
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- #[inline]
- fn fract(self) -> Self {
- self - libm::truncf(self)
- }
- }
- impl FloatCore for f64 {
- constant! {
- infinity() -> f64::INFINITY;
- neg_infinity() -> f64::NEG_INFINITY;
- nan() -> f64::NAN;
- neg_zero() -> -0.0;
- min_value() -> f64::MIN;
- min_positive_value() -> f64::MIN_POSITIVE;
- epsilon() -> f64::EPSILON;
- max_value() -> f64::MAX;
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- integer_decode_f64(self)
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn classify(self) -> FpCategory {
- const EXP_MASK: u64 = 0x7ff0000000000000;
- const MAN_MASK: u64 = 0x000fffffffffffff;
- // Safety: this identical to the implementation of f64::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u64 = unsafe { mem::transmute(self) };
- match (bits & MAN_MASK, bits & EXP_MASK) {
- (0, 0) => FpCategory::Zero,
- (_, 0) => FpCategory::Subnormal,
- (0, EXP_MASK) => FpCategory::Infinite,
- (_, EXP_MASK) => FpCategory::Nan,
- _ => FpCategory::Normal,
- }
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn is_sign_negative(self) -> bool {
- const SIGN_MASK: u64 = 0x8000000000000000;
- // Safety: this identical to the implementation of f64::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u64 = unsafe { mem::transmute(self) };
- bits & SIGN_MASK != 0
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_degrees(self) -> Self {
- // The division here is correctly rounded with respect to the true
- // value of 180/π. (This differs from f32, where a constant must be
- // used to ensure a correctly rounded result.)
- self * (180.0 / f64::consts::PI)
- }
- #[inline]
- #[cfg(not(feature = "std"))]
- fn to_radians(self) -> Self {
- self * (f64::consts::PI / 180.0)
- }
- #[cfg(feature = "std")]
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::min(self, other: Self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::recip(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- }
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- forward! {
- libm::floor as floor(self) -> Self;
- libm::ceil as ceil(self) -> Self;
- libm::round as round(self) -> Self;
- libm::trunc as trunc(self) -> Self;
- libm::fabs as abs(self) -> Self;
- libm::fmin as min(self, other: Self) -> Self;
- libm::fmax as max(self, other: Self) -> Self;
- }
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- #[inline]
- fn fract(self) -> Self {
- self - libm::trunc(self)
- }
- }
- // FIXME: these doctests aren't actually helpful, because they're using and
- // testing the inherent methods directly, not going through `Float`.
- /// Generic trait for floating point numbers
- ///
- /// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
- #[cfg(any(feature = "std", feature = "libm"))]
- pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
- /// Returns the `NaN` value.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let nan: f32 = Float::nan();
- ///
- /// assert!(nan.is_nan());
- /// ```
- fn nan() -> Self;
- /// Returns the infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let infinity: f32 = Float::infinity();
- ///
- /// assert!(infinity.is_infinite());
- /// assert!(!infinity.is_finite());
- /// assert!(infinity > f32::MAX);
- /// ```
- fn infinity() -> Self;
- /// Returns the negative infinite value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let neg_infinity: f32 = Float::neg_infinity();
- ///
- /// assert!(neg_infinity.is_infinite());
- /// assert!(!neg_infinity.is_finite());
- /// assert!(neg_infinity < f32::MIN);
- /// ```
- fn neg_infinity() -> Self;
- /// Returns `-0.0`.
- ///
- /// ```
- /// use num_traits::{Zero, Float};
- ///
- /// let inf: f32 = Float::infinity();
- /// let zero: f32 = Zero::zero();
- /// let neg_zero: f32 = Float::neg_zero();
- ///
- /// assert_eq!(zero, neg_zero);
- /// assert_eq!(7.0f32/inf, zero);
- /// assert_eq!(zero * 10.0, zero);
- /// ```
- fn neg_zero() -> Self;
- /// Returns the smallest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_value();
- ///
- /// assert_eq!(x, f64::MIN);
- /// ```
- fn min_value() -> Self;
- /// Returns the smallest positive, normalized value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::min_positive_value();
- ///
- /// assert_eq!(x, f64::MIN_POSITIVE);
- /// ```
- fn min_positive_value() -> Self;
- /// Returns epsilon, a small positive value.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::epsilon();
- ///
- /// assert_eq!(x, f64::EPSILON);
- /// ```
- ///
- /// # Panics
- ///
- /// The default implementation will panic if `f32::EPSILON` cannot
- /// be cast to `Self`.
- fn epsilon() -> Self {
- Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON")
- }
- /// Returns the largest finite value that this type can represent.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x: f64 = Float::max_value();
- /// assert_eq!(x, f64::MAX);
- /// ```
- fn max_value() -> Self;
- /// Returns `true` if this value is `NaN` and false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan = f64::NAN;
- /// let f = 7.0;
- ///
- /// assert!(nan.is_nan());
- /// assert!(!f.is_nan());
- /// ```
- fn is_nan(self) -> bool;
- /// Returns `true` if this value is positive infinity or negative infinity and
- /// false otherwise.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(!f.is_infinite());
- /// assert!(!nan.is_infinite());
- ///
- /// assert!(inf.is_infinite());
- /// assert!(neg_inf.is_infinite());
- /// ```
- fn is_infinite(self) -> bool;
- /// Returns `true` if this number is neither infinite nor `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let f = 7.0f32;
- /// let inf: f32 = Float::infinity();
- /// let neg_inf: f32 = Float::neg_infinity();
- /// let nan: f32 = f32::NAN;
- ///
- /// assert!(f.is_finite());
- ///
- /// assert!(!nan.is_finite());
- /// assert!(!inf.is_finite());
- /// assert!(!neg_inf.is_finite());
- /// ```
- fn is_finite(self) -> bool;
- /// Returns `true` if the number is neither zero, infinite,
- /// [subnormal][subnormal], or `NaN`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f32;
- ///
- /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
- /// let max = f32::MAX;
- /// let lower_than_min = 1.0e-40_f32;
- /// let zero = 0.0f32;
- ///
- /// assert!(min.is_normal());
- /// assert!(max.is_normal());
- ///
- /// assert!(!zero.is_normal());
- /// assert!(!f32::NAN.is_normal());
- /// assert!(!f32::INFINITY.is_normal());
- /// // Values between `0` and `min` are Subnormal.
- /// assert!(!lower_than_min.is_normal());
- /// ```
- /// [subnormal]: http://en.wikipedia.org/wiki/Denormal_number
- fn is_normal(self) -> bool;
- /// Returns the floating point category of the number. If only one property
- /// is going to be tested, it is generally faster to use the specific
- /// predicate instead.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::num::FpCategory;
- /// use std::f32;
- ///
- /// let num = 12.4f32;
- /// let inf = f32::INFINITY;
- ///
- /// assert_eq!(num.classify(), FpCategory::Normal);
- /// assert_eq!(inf.classify(), FpCategory::Infinite);
- /// ```
- fn classify(self) -> FpCategory;
- /// Returns the largest integer less than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.99;
- /// let g = 3.0;
- ///
- /// assert_eq!(f.floor(), 3.0);
- /// assert_eq!(g.floor(), 3.0);
- /// ```
- fn floor(self) -> Self;
- /// Returns the smallest integer greater than or equal to a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.01;
- /// let g = 4.0;
- ///
- /// assert_eq!(f.ceil(), 4.0);
- /// assert_eq!(g.ceil(), 4.0);
- /// ```
- fn ceil(self) -> Self;
- /// Returns the nearest integer to a number. Round half-way cases away from
- /// `0.0`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.3;
- ///
- /// assert_eq!(f.round(), 3.0);
- /// assert_eq!(g.round(), -3.0);
- /// ```
- fn round(self) -> Self;
- /// Return the integer part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.3;
- /// let g = -3.7;
- ///
- /// assert_eq!(f.trunc(), 3.0);
- /// assert_eq!(g.trunc(), -3.0);
- /// ```
- fn trunc(self) -> Self;
- /// Returns the fractional part of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- /// let abs_difference_x = (x.fract() - 0.5).abs();
- /// let abs_difference_y = (y.fract() - (-0.5)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn fract(self) -> Self;
- /// Computes the absolute value of `self`. Returns `Float::nan()` if the
- /// number is `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 3.5;
- /// let y = -3.5;
- ///
- /// let abs_difference_x = (x.abs() - x).abs();
- /// let abs_difference_y = (y.abs() - (-y)).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- ///
- /// assert!(f64::NAN.abs().is_nan());
- /// ```
- fn abs(self) -> Self;
- /// Returns a number that represents the sign of `self`.
- ///
- /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
- /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
- /// - `Float::nan()` if the number is `Float::nan()`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = 3.5;
- ///
- /// assert_eq!(f.signum(), 1.0);
- /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
- ///
- /// assert!(f64::NAN.signum().is_nan());
- /// ```
- fn signum(self) -> Self;
- /// Returns `true` if `self` is positive, including `+0.0`,
- /// `Float::infinity()`, and since Rust 1.20 also `Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let neg_nan: f64 = -f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(f.is_sign_positive());
- /// assert!(!g.is_sign_positive());
- /// assert!(!neg_nan.is_sign_positive());
- /// ```
- fn is_sign_positive(self) -> bool;
- /// Returns `true` if `self` is negative, including `-0.0`,
- /// `Float::neg_infinity()`, and since Rust 1.20 also `-Float::nan()`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let nan: f64 = f64::NAN;
- ///
- /// let f = 7.0;
- /// let g = -7.0;
- ///
- /// assert!(!f.is_sign_negative());
- /// assert!(g.is_sign_negative());
- /// assert!(!nan.is_sign_negative());
- /// ```
- fn is_sign_negative(self) -> bool;
- /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
- /// error, yielding a more accurate result than an unfused multiply-add.
- ///
- /// Using `mul_add` can be more performant than an unfused multiply-add if
- /// the target architecture has a dedicated `fma` CPU instruction.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let m = 10.0;
- /// let x = 4.0;
- /// let b = 60.0;
- ///
- /// // 100.0
- /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn mul_add(self, a: Self, b: Self) -> Self;
- /// Take the reciprocal (inverse) of a number, `1/x`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.recip() - (1.0/x)).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn recip(self) -> Self;
- /// Raise a number to an integer power.
- ///
- /// Using this function is generally faster than using `powf`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powi(2) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powi(self, n: i32) -> Self;
- /// Raise a number to a floating point power.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let abs_difference = (x.powf(2.0) - x*x).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn powf(self, n: Self) -> Self;
- /// Take the square root of a number.
- ///
- /// Returns NaN if `self` is a negative number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let positive = 4.0;
- /// let negative = -4.0;
- ///
- /// let abs_difference = (positive.sqrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// assert!(negative.sqrt().is_nan());
- /// ```
- fn sqrt(self) -> Self;
- /// Returns `e^(self)`, (the exponential function).
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp(self) -> Self;
- /// Returns `2^(self)`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 2.0;
- ///
- /// // 2^2 - 4 == 0
- /// let abs_difference = (f.exp2() - 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp2(self) -> Self;
- /// Returns the natural logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let one = 1.0;
- /// // e^1
- /// let e = one.exp();
- ///
- /// // ln(e) - 1 == 0
- /// let abs_difference = (e.ln() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln(self) -> Self;
- /// Returns the logarithm of the number with respect to an arbitrary base.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- /// let two = 2.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
- ///
- /// assert!(abs_difference_10 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn log(self, base: Self) -> Self;
- /// Returns the base 2 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let two = 2.0;
- ///
- /// // log2(2) - 1 == 0
- /// let abs_difference = (two.log2() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log2(self) -> Self;
- /// Returns the base 10 logarithm of the number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let ten = 10.0;
- ///
- /// // log10(10) - 1 == 0
- /// let abs_difference = (ten.log10() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn log10(self) -> Self;
- /// Converts radians to degrees.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = consts::PI;
- ///
- /// let abs_difference = (angle.to_degrees() - 180.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_degrees(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * ninety / halfpi
- }
- /// Converts degrees to radians.
- ///
- /// ```
- /// use std::f64::consts;
- ///
- /// let angle = 180.0_f64;
- ///
- /// let abs_difference = (angle.to_radians() - consts::PI).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- #[inline]
- fn to_radians(self) -> Self {
- let halfpi = Self::zero().acos();
- let ninety = Self::from(90u8).unwrap();
- self * halfpi / ninety
- }
- /// Returns the maximum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.max(y), y);
- /// ```
- fn max(self, other: Self) -> Self;
- /// Returns the minimum of the two numbers.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let y = 2.0;
- ///
- /// assert_eq!(x.min(y), x);
- /// ```
- fn min(self, other: Self) -> Self;
- /// The positive difference of two numbers.
- ///
- /// * If `self <= other`: `0:0`
- /// * Else: `self - other`
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 3.0;
- /// let y = -3.0;
- ///
- /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
- /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
- ///
- /// assert!(abs_difference_x < 1e-10);
- /// assert!(abs_difference_y < 1e-10);
- /// ```
- fn abs_sub(self, other: Self) -> Self;
- /// Take the cubic root of a number.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 8.0;
- ///
- /// // x^(1/3) - 2 == 0
- /// let abs_difference = (x.cbrt() - 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cbrt(self) -> Self;
- /// Calculate the length of the hypotenuse of a right-angle triangle given
- /// legs of length `x` and `y`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 2.0;
- /// let y = 3.0;
- ///
- /// // sqrt(x^2 + y^2)
- /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn hypot(self, other: Self) -> Self;
- /// Computes the sine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/2.0;
- ///
- /// let abs_difference = (x.sin() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sin(self) -> Self;
- /// Computes the cosine of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = 2.0*f64::consts::PI;
- ///
- /// let abs_difference = (x.cos() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn cos(self) -> Self;
- /// Computes the tangent of a number (in radians).
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let abs_difference = (x.tan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-14);
- /// ```
- fn tan(self) -> Self;
- /// Computes the arcsine of a number. Return value is in radians in
- /// the range [-pi/2, pi/2] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 2.0;
- ///
- /// // asin(sin(pi/2))
- /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn asin(self) -> Self;
- /// Computes the arccosine of a number. Return value is in radians in
- /// the range [0, pi] or NaN if the number is outside the range
- /// [-1, 1].
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let f = f64::consts::PI / 4.0;
- ///
- /// // acos(cos(pi/4))
- /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn acos(self) -> Self;
- /// Computes the arctangent of a number. Return value is in radians in the
- /// range [-pi/2, pi/2];
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 1.0;
- ///
- /// // atan(tan(1))
- /// let abs_difference = (f.tan().atan() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn atan(self) -> Self;
- /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
- ///
- /// * `x = 0`, `y = 0`: `0`
- /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
- /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
- /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let pi = f64::consts::PI;
- /// // All angles from horizontal right (+x)
- /// // 45 deg counter-clockwise
- /// let x1 = 3.0;
- /// let y1 = -3.0;
- ///
- /// // 135 deg clockwise
- /// let x2 = -3.0;
- /// let y2 = 3.0;
- ///
- /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
- /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
- ///
- /// assert!(abs_difference_1 < 1e-10);
- /// assert!(abs_difference_2 < 1e-10);
- /// ```
- fn atan2(self, other: Self) -> Self;
- /// Simultaneously computes the sine and cosine of the number, `x`. Returns
- /// `(sin(x), cos(x))`.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::PI/4.0;
- /// let f = x.sin_cos();
- ///
- /// let abs_difference_0 = (f.0 - x.sin()).abs();
- /// let abs_difference_1 = (f.1 - x.cos()).abs();
- ///
- /// assert!(abs_difference_0 < 1e-10);
- /// assert!(abs_difference_0 < 1e-10);
- /// ```
- fn sin_cos(self) -> (Self, Self);
- /// Returns `e^(self) - 1` in a way that is accurate even if the
- /// number is close to zero.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 7.0;
- ///
- /// // e^(ln(7)) - 1
- /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn exp_m1(self) -> Self;
- /// Returns `ln(1+n)` (natural logarithm) more accurately than if
- /// the operations were performed separately.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let x = f64::consts::E - 1.0;
- ///
- /// // ln(1 + (e - 1)) == ln(e) == 1
- /// let abs_difference = (x.ln_1p() - 1.0).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn ln_1p(self) -> Self;
- /// Hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.sinh();
- /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
- /// let g = (e*e - 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn sinh(self) -> Self;
- /// Hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- /// let f = x.cosh();
- /// // Solving cosh() at 1 gives this result
- /// let g = (e*e + 1.0)/(2.0*e);
- /// let abs_difference = (f - g).abs();
- ///
- /// // Same result
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn cosh(self) -> Self;
- /// Hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let x = 1.0;
- ///
- /// let f = x.tanh();
- /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
- /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
- /// let abs_difference = (f - g).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn tanh(self) -> Self;
- /// Inverse hyperbolic sine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.sinh().asinh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn asinh(self) -> Self;
- /// Inverse hyperbolic cosine function.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let x = 1.0;
- /// let f = x.cosh().acosh();
- ///
- /// let abs_difference = (f - x).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn acosh(self) -> Self;
- /// Inverse hyperbolic tangent function.
- ///
- /// ```
- /// use num_traits::Float;
- /// use std::f64;
- ///
- /// let e = f64::consts::E;
- /// let f = e.tanh().atanh();
- ///
- /// let abs_difference = (f - e).abs();
- ///
- /// assert!(abs_difference < 1.0e-10);
- /// ```
- fn atanh(self) -> Self;
- /// Returns the mantissa, base 2 exponent, and sign as integers, respectively.
- /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`.
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let num = 2.0f32;
- ///
- /// // (8388608, -22, 1)
- /// let (mantissa, exponent, sign) = Float::integer_decode(num);
- /// let sign_f = sign as f32;
- /// let mantissa_f = mantissa as f32;
- /// let exponent_f = num.powf(exponent as f32);
- ///
- /// // 1 * 8388608 * 2^(-22) == 2
- /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs();
- ///
- /// assert!(abs_difference < 1e-10);
- /// ```
- fn integer_decode(self) -> (u64, i16, i8);
- /// Returns a number composed of the magnitude of `self` and the sign of
- /// `sign`.
- ///
- /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
- /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of
- /// `sign` is returned.
- ///
- /// # Examples
- ///
- /// ```
- /// use num_traits::Float;
- ///
- /// let f = 3.5_f32;
- ///
- /// assert_eq!(f.copysign(0.42), 3.5_f32);
- /// assert_eq!(f.copysign(-0.42), -3.5_f32);
- /// assert_eq!((-f).copysign(0.42), 3.5_f32);
- /// assert_eq!((-f).copysign(-0.42), -3.5_f32);
- ///
- /// assert!(f32::nan().copysign(1.0).is_nan());
- /// ```
- fn copysign(self, sign: Self) -> Self {
- if self.is_sign_negative() == sign.is_sign_negative() {
- self
- } else {
- self.neg()
- }
- }
- }
- #[cfg(feature = "std")]
- macro_rules! float_impl_std {
- ($T:ident $decode:ident) => {
- impl Float for $T {
- constant! {
- nan() -> $T::NAN;
- infinity() -> $T::INFINITY;
- neg_infinity() -> $T::NEG_INFINITY;
- neg_zero() -> -0.0;
- min_value() -> $T::MIN;
- min_positive_value() -> $T::MIN_POSITIVE;
- epsilon() -> $T::EPSILON;
- max_value() -> $T::MAX;
- }
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- <$T>::abs_sub(self, other)
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
- forward! {
- Self::is_nan(self) -> bool;
- Self::is_infinite(self) -> bool;
- Self::is_finite(self) -> bool;
- Self::is_normal(self) -> bool;
- Self::classify(self) -> FpCategory;
- Self::floor(self) -> Self;
- Self::ceil(self) -> Self;
- Self::round(self) -> Self;
- Self::trunc(self) -> Self;
- Self::fract(self) -> Self;
- Self::abs(self) -> Self;
- Self::signum(self) -> Self;
- Self::is_sign_positive(self) -> bool;
- Self::is_sign_negative(self) -> bool;
- Self::mul_add(self, a: Self, b: Self) -> Self;
- Self::recip(self) -> Self;
- Self::powi(self, n: i32) -> Self;
- Self::powf(self, n: Self) -> Self;
- Self::sqrt(self) -> Self;
- Self::exp(self) -> Self;
- Self::exp2(self) -> Self;
- Self::ln(self) -> Self;
- Self::log(self, base: Self) -> Self;
- Self::log2(self) -> Self;
- Self::log10(self) -> Self;
- Self::to_degrees(self) -> Self;
- Self::to_radians(self) -> Self;
- Self::max(self, other: Self) -> Self;
- Self::min(self, other: Self) -> Self;
- Self::cbrt(self) -> Self;
- Self::hypot(self, other: Self) -> Self;
- Self::sin(self) -> Self;
- Self::cos(self) -> Self;
- Self::tan(self) -> Self;
- Self::asin(self) -> Self;
- Self::acos(self) -> Self;
- Self::atan(self) -> Self;
- Self::atan2(self, other: Self) -> Self;
- Self::sin_cos(self) -> (Self, Self);
- Self::exp_m1(self) -> Self;
- Self::ln_1p(self) -> Self;
- Self::sinh(self) -> Self;
- Self::cosh(self) -> Self;
- Self::tanh(self) -> Self;
- Self::asinh(self) -> Self;
- Self::acosh(self) -> Self;
- Self::atanh(self) -> Self;
- }
- #[cfg(has_copysign)]
- #[inline]
- fn copysign(self, sign: Self) -> Self {
- Self::copysign(self, sign)
- }
- }
- };
- }
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- macro_rules! float_impl_libm {
- ($T:ident $decode:ident) => {
- constant! {
- nan() -> $T::NAN;
- infinity() -> $T::INFINITY;
- neg_infinity() -> $T::NEG_INFINITY;
- neg_zero() -> -0.0;
- min_value() -> $T::MIN;
- min_positive_value() -> $T::MIN_POSITIVE;
- epsilon() -> $T::EPSILON;
- max_value() -> $T::MAX;
- }
- #[inline]
- fn integer_decode(self) -> (u64, i16, i8) {
- $decode(self)
- }
- #[inline]
- fn fract(self) -> Self {
- self - Float::trunc(self)
- }
- #[inline]
- fn log(self, base: Self) -> Self {
- self.ln() / base.ln()
- }
- forward! {
- FloatCore::is_nan(self) -> bool;
- FloatCore::is_infinite(self) -> bool;
- FloatCore::is_finite(self) -> bool;
- FloatCore::is_normal(self) -> bool;
- FloatCore::classify(self) -> FpCategory;
- FloatCore::signum(self) -> Self;
- FloatCore::is_sign_positive(self) -> bool;
- FloatCore::is_sign_negative(self) -> bool;
- FloatCore::recip(self) -> Self;
- FloatCore::powi(self, n: i32) -> Self;
- FloatCore::to_degrees(self) -> Self;
- FloatCore::to_radians(self) -> Self;
- }
- };
- }
- fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
- // Safety: this identical to the implementation of f32::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u32 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0x7fffff) << 1
- } else {
- (bits & 0x7fffff) | 0x800000
- };
- // Exponent bias + mantissa shift
- exponent -= 127 + 23;
- (mantissa as u64, exponent, sign)
- }
- fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
- // Safety: this identical to the implementation of f64::to_bits(),
- // which is only available starting at Rust 1.20
- let bits: u64 = unsafe { mem::transmute(f) };
- let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
- let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
- let mantissa = if exponent == 0 {
- (bits & 0xfffffffffffff) << 1
- } else {
- (bits & 0xfffffffffffff) | 0x10000000000000
- };
- // Exponent bias + mantissa shift
- exponent -= 1023 + 52;
- (mantissa, exponent, sign)
- }
- #[cfg(feature = "std")]
- float_impl_std!(f32 integer_decode_f32);
- #[cfg(feature = "std")]
- float_impl_std!(f64 integer_decode_f64);
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- impl Float for f32 {
- float_impl_libm!(f32 integer_decode_f32);
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- libm::fdimf(self, other)
- }
- forward! {
- libm::floorf as floor(self) -> Self;
- libm::ceilf as ceil(self) -> Self;
- libm::roundf as round(self) -> Self;
- libm::truncf as trunc(self) -> Self;
- libm::fabsf as abs(self) -> Self;
- libm::fmaf as mul_add(self, a: Self, b: Self) -> Self;
- libm::powf as powf(self, n: Self) -> Self;
- libm::sqrtf as sqrt(self) -> Self;
- libm::expf as exp(self) -> Self;
- libm::exp2f as exp2(self) -> Self;
- libm::logf as ln(self) -> Self;
- libm::log2f as log2(self) -> Self;
- libm::log10f as log10(self) -> Self;
- libm::cbrtf as cbrt(self) -> Self;
- libm::hypotf as hypot(self, other: Self) -> Self;
- libm::sinf as sin(self) -> Self;
- libm::cosf as cos(self) -> Self;
- libm::tanf as tan(self) -> Self;
- libm::asinf as asin(self) -> Self;
- libm::acosf as acos(self) -> Self;
- libm::atanf as atan(self) -> Self;
- libm::atan2f as atan2(self, other: Self) -> Self;
- libm::sincosf as sin_cos(self) -> (Self, Self);
- libm::expm1f as exp_m1(self) -> Self;
- libm::log1pf as ln_1p(self) -> Self;
- libm::sinhf as sinh(self) -> Self;
- libm::coshf as cosh(self) -> Self;
- libm::tanhf as tanh(self) -> Self;
- libm::asinhf as asinh(self) -> Self;
- libm::acoshf as acosh(self) -> Self;
- libm::atanhf as atanh(self) -> Self;
- libm::fmaxf as max(self, other: Self) -> Self;
- libm::fminf as min(self, other: Self) -> Self;
- libm::copysignf as copysign(self, other: Self) -> Self;
- }
- }
- #[cfg(all(not(feature = "std"), feature = "libm"))]
- impl Float for f64 {
- float_impl_libm!(f64 integer_decode_f64);
- #[inline]
- #[allow(deprecated)]
- fn abs_sub(self, other: Self) -> Self {
- libm::fdim(self, other)
- }
- forward! {
- libm::floor as floor(self) -> Self;
- libm::ceil as ceil(self) -> Self;
- libm::round as round(self) -> Self;
- libm::trunc as trunc(self) -> Self;
- libm::fabs as abs(self) -> Self;
- libm::fma as mul_add(self, a: Self, b: Self) -> Self;
- libm::pow as powf(self, n: Self) -> Self;
- libm::sqrt as sqrt(self) -> Self;
- libm::exp as exp(self) -> Self;
- libm::exp2 as exp2(self) -> Self;
- libm::log as ln(self) -> Self;
- libm::log2 as log2(self) -> Self;
- libm::log10 as log10(self) -> Self;
- libm::cbrt as cbrt(self) -> Self;
- libm::hypot as hypot(self, other: Self) -> Self;
- libm::sin as sin(self) -> Self;
- libm::cos as cos(self) -> Self;
- libm::tan as tan(self) -> Self;
- libm::asin as asin(self) -> Self;
- libm::acos as acos(self) -> Self;
- libm::atan as atan(self) -> Self;
- libm::atan2 as atan2(self, other: Self) -> Self;
- libm::sincos as sin_cos(self) -> (Self, Self);
- libm::expm1 as exp_m1(self) -> Self;
- libm::log1p as ln_1p(self) -> Self;
- libm::sinh as sinh(self) -> Self;
- libm::cosh as cosh(self) -> Self;
- libm::tanh as tanh(self) -> Self;
- libm::asinh as asinh(self) -> Self;
- libm::acosh as acosh(self) -> Self;
- libm::atanh as atanh(self) -> Self;
- libm::fmax as max(self, other: Self) -> Self;
- libm::fmin as min(self, other: Self) -> Self;
- libm::copysign as copysign(self, sign: Self) -> Self;
- }
- }
- macro_rules! float_const_impl {
- ($(#[$doc:meta] $constant:ident,)+) => (
- #[allow(non_snake_case)]
- pub trait FloatConst {
- $(#[$doc] fn $constant() -> Self;)+
- #[doc = "Return the full circle constant `τ`."]
- #[inline]
- fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> {
- Self::PI() + Self::PI()
- }
- #[doc = "Return `log10(2.0)`."]
- #[inline]
- fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> {
- Self::LN_2() / Self::LN_10()
- }
- #[doc = "Return `log2(10.0)`."]
- #[inline]
- fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> {
- Self::LN_10() / Self::LN_2()
- }
- }
- float_const_impl! { @float f32, $($constant,)+ }
- float_const_impl! { @float f64, $($constant,)+ }
- );
- (@float $T:ident, $($constant:ident,)+) => (
- impl FloatConst for $T {
- constant! {
- $( $constant() -> $T::consts::$constant; )+
- TAU() -> 6.28318530717958647692528676655900577;
- LOG10_2() -> 0.301029995663981195213738894724493027;
- LOG2_10() -> 3.32192809488736234787031942948939018;
- }
- }
- );
- }
- float_const_impl! {
- #[doc = "Return Euler’s number."]
- E,
- #[doc = "Return `1.0 / π`."]
- FRAC_1_PI,
- #[doc = "Return `1.0 / sqrt(2.0)`."]
- FRAC_1_SQRT_2,
- #[doc = "Return `2.0 / π`."]
- FRAC_2_PI,
- #[doc = "Return `2.0 / sqrt(π)`."]
- FRAC_2_SQRT_PI,
- #[doc = "Return `π / 2.0`."]
- FRAC_PI_2,
- #[doc = "Return `π / 3.0`."]
- FRAC_PI_3,
- #[doc = "Return `π / 4.0`."]
- FRAC_PI_4,
- #[doc = "Return `π / 6.0`."]
- FRAC_PI_6,
- #[doc = "Return `π / 8.0`."]
- FRAC_PI_8,
- #[doc = "Return `ln(10.0)`."]
- LN_10,
- #[doc = "Return `ln(2.0)`."]
- LN_2,
- #[doc = "Return `log10(e)`."]
- LOG10_E,
- #[doc = "Return `log2(e)`."]
- LOG2_E,
- #[doc = "Return Archimedes’ constant `π`."]
- PI,
- #[doc = "Return `sqrt(2.0)`."]
- SQRT_2,
- }
- #[cfg(test)]
- mod tests {
- use core::f64::consts;
- const DEG_RAD_PAIRS: [(f64, f64); 7] = [
- (0.0, 0.),
- (22.5, consts::FRAC_PI_8),
- (30.0, consts::FRAC_PI_6),
- (45.0, consts::FRAC_PI_4),
- (60.0, consts::FRAC_PI_3),
- (90.0, consts::FRAC_PI_2),
- (180.0, consts::PI),
- ];
- #[test]
- fn convert_deg_rad() {
- use float::FloatCore;
- for &(deg, rad) in &DEG_RAD_PAIRS {
- assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6);
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5);
- assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5);
- }
- }
- #[cfg(any(feature = "std", feature = "libm"))]
- #[test]
- fn convert_deg_rad_std() {
- for &(deg, rad) in &DEG_RAD_PAIRS {
- use Float;
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-6);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-6);
- let (deg, rad) = (deg as f32, rad as f32);
- assert!((Float::to_degrees(rad) - deg).abs() < 1e-5);
- assert!((Float::to_radians(deg) - rad).abs() < 1e-5);
- }
- }
- #[test]
- // This fails with the forwarded `std` implementation in Rust 1.8.
- // To avoid the failure, the test is limited to `no_std` builds.
- #[cfg(not(feature = "std"))]
- fn to_degrees_rounding() {
- use float::FloatCore;
- assert_eq!(
- FloatCore::to_degrees(1_f32),
- 57.2957795130823208767981548141051703
- );
- }
- #[test]
- #[cfg(any(feature = "std", feature = "libm"))]
- fn extra_logs() {
- use float::{Float, FloatConst};
- fn check<F: Float + FloatConst>(diff: F) {
- let _2 = F::from(2.0).unwrap();
- assert!((F::LOG10_2() - F::log10(_2)).abs() < diff);
- assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff);
- let _10 = F::from(10.0).unwrap();
- assert!((F::LOG2_10() - F::log2(_10)).abs() < diff);
- assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff);
- }
- check::<f32>(1e-6);
- check::<f64>(1e-12);
- }
- #[test]
- #[cfg(any(feature = "std", feature = "libm"))]
- fn copysign() {
- use float::Float;
- test_copysign_generic(2.0_f32, -2.0_f32, f32::nan());
- test_copysign_generic(2.0_f64, -2.0_f64, f64::nan());
- test_copysignf(2.0_f32, -2.0_f32, f32::nan());
- }
- #[cfg(any(feature = "std", feature = "libm"))]
- fn test_copysignf(p: f32, n: f32, nan: f32) {
- use core::ops::Neg;
- use float::Float;
- assert!(p.is_sign_positive());
- assert!(n.is_sign_negative());
- assert!(nan.is_nan());
- assert_eq!(p, Float::copysign(p, p));
- assert_eq!(p.neg(), Float::copysign(p, n));
- assert_eq!(n, Float::copysign(n, n));
- assert_eq!(n.neg(), Float::copysign(n, p));
- // FIXME: is_sign... only works on NaN starting in Rust 1.20
- // assert!(Float::copysign(nan, p).is_sign_positive());
- // assert!(Float::copysign(nan, n).is_sign_negative());
- }
- #[cfg(any(feature = "std", feature = "libm"))]
- fn test_copysign_generic<F: ::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) {
- assert!(p.is_sign_positive());
- assert!(n.is_sign_negative());
- assert!(nan.is_nan());
- assert_eq!(p, p.copysign(p));
- assert_eq!(p.neg(), p.copysign(n));
- assert_eq!(n, n.copysign(n));
- assert_eq!(n.neg(), n.copysign(p));
- // FIXME: is_sign... only works on NaN starting in Rust 1.20
- // assert!(nan.copysign(p).is_sign_positive());
- // assert!(nan.copysign(n).is_sign_negative());
- }
- }
|