@@ -0,0 +1,2 @@
+target
+Cargo.lock
@@ -0,0 +1,6 @@
+[package]
+name = "core_io"
+version = "0.0.20160707"
+authors = ["Jethro Beekman <jethro@jbeekman.nl>"]
+
+[dependencies]
@@ -0,0 +1,45 @@
+## Adding new nightly versions
+First, make sure the commit you want to add is fetch in the git tree at
+`/your/rust/dir/.git`. Then, import the right source files:
+```
+$ echo FULL_COMMIT_ID ...|GIT_DIR=/your/rust/dir/.git ./sync.sh
+Instead of echoing in the commit IDs, you might pipe in `rustc-commit-db
+list-valid`.
+Now look at the changes with `git status`. If nothing changed then the commit
+you tried to add was already there. If only `mapping.rs` changed, the I/O code
+has not changed for this particular commit. If a directory in `src/` was added,
+`cd` into it to apply the patch.
+Find out which previously-existing commit is closest to the new one and search
+this git repository for a commit with the description `Patch COMMIT for core`.
+For example, if you're adding dd56a6ad0845b76509c4f8967e8ca476471ab7e0, the
+best closest commit is 80d733385aa2ff150a5d6f83ecfe55afc7e19e68.
+$ git log --pretty=oneline --grep=80d733385aa2ff150a5d6f83ecfe55afc7e19e68
+92fc0ad81c432b5fa3e848fc1892815ca2f55100 Patch 80d733385aa2ff150a5d6f83ecfe55afc7e19e68 for core
+The commit ID at the start of the line is the patch we'll try to apply:
+```sh
+$ git show 92fc0ad81c432b5fa3e848fc1892815ca2f55100|patch -p3
+$ cargo build
+Now, fix any errors `cargo` reports. If `patch` also reported errors, you may
+look at the rejects for inspiration ;).
+Finally, commit this new version:
+$ git commit -m "Patch dd56a6ad0845b76509c4f8967e8ca476471ab7e0 for core" .
+Do not commit any files in different directories, this will break the patching
+scheme. If `mapping.rs` changed, update it in a separate commit.
@@ -0,0 +1,88 @@
+-Mapping("01411937ff6b2a2dfad03d060d636941b0034591","dd56a6ad0845b76509c4f8967e8ca476471ab7e0")
+-Mapping("0554abac637800415bb1b30d8656898552a55ea0","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("0667ae93fb72eb25594258e55de9b4ae8f9f02a8","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("0dcc413e42f15f4fc51a0ca88a99cc89454ec43d","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("12238b984abfacb2cccea176f862c94aa1231fb5","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("12d16599d84c25899f02a6e53110d1e70cdcbd8a","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("17790570373a7f560950d53ea4d67807232db255","8128817119e479b0610685e3fc7a6ff21cde5abc")
+-Mapping("179539f6eb61f75244a0dde641b6e4e09c0921ec","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("1ab87b65a220a933dc9d171ef0fd865ddd88fe89","dd56a6ad0845b76509c4f8967e8ca476471ab7e0")
+-Mapping("1c975eafa934e291e4f94b7252faae767de17313","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("2174bd97c1458d89a87eb2b614135d7ad68d6f18","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("21922e1f48b263b39498cfeec79c1ca3f5886efe","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("22ac88f1a47a82195a49fbff3cf24a2c395d7a81","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("23ccaddaa7d1cb71e49ef1b1f423b3245fa3a879","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("241a9d0ddf99fd40d273c615e9b1e8ce6052d94a","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("267cde2598db3b858730cc1f700f740964343828","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("2b6020723115e77ebe94f228c0c9b977b9199c6e","552eda70d33cead1398adfecce1a75e7a61e3daf")
+-Mapping("2b79e05a05f7259891adc4d7b0487d44121eb0c1","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("30a3849f228833f9dc280120126d16aef3a292ba","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("34505e22289d3b2416ab0922131e8526d0d5cc0b","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("476fe6eefe17db91ff7a60aab34aa67a0a750a18","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("4ec5ce5e44823c29d4f641f764e53d57e8b28a6a","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("51d2d3da8081df21c51ee7ef9ae174531bb6557e","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("526f2bf5c534308193246e13ab2da8b3c0cf3cbb","8128817119e479b0610685e3fc7a6ff21cde5abc")
+-Mapping("5522e678bcefe14cc2ab3d0ab329b7059ce52b36","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("576229fea054105f1f3a49ca5f31f5f4983f5266","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("57ef015132ec09345b88d2ec20a9d9809b5d3dfc","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("5ab11d72cab23f0cea63cbf7a88817ff2a45bab0","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("5c2a5d4499376ade0dd6bb30e8c5909abb42e574","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("5ebe41835fcc3dbfdbe282a9b4c3780968c0a97a","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("600dc3552ffcdff014cc770e98a67b674496d10a","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("601eb13dc4dd075f82f03c85bbf8a1fbadfe2d6e","cae91d7c8c21aa860bda29c62207a6726837952b")
+-Mapping("62e2b2fb7acf5f8331781cd7128c754ed1b66c4f","9fe3c065b0e94b1e2ce7f14ab512475e79426ce4")
+-Mapping("645dd013ac6b334ab5bf7a7240c2243f4bb590c9","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("696b703b5a58816bb0e549ac332a98fa7e635949","dd56a6ad0845b76509c4f8967e8ca476471ab7e0")
+-Mapping("6974800c6b3733beb3aea31a0994d0c47c7a76c9","8e414e0e3f27d1917d11ee80de827698beb53891")
+-Mapping("6b4511755cfe63a46f2db8c72145e07f94911c08","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("6d215fe04ce3f638d717d7fcea95c40d0a655ff9","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("6dcc2c1dee3b58afd44665d1df4a248bdd04cce5","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("6e00b55568c23e6270ae193a72256cc1c7c5f23a","cae91d7c8c21aa860bda29c62207a6726837952b")
+-Mapping("6e0f2f2f050443f2aec4e9c7d25618a6a6639b83","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("74b886ab14d48c1f043dde0102aeff365c2f991f","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("763f9234b052c7911dc4cf952a81a85c51c57784","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("764ef92ae7a26cbb9c2121de3812a0a17739f65f","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("7746a334da364e5e4c25360cd52e97691cbddc08","cae91d7c8c21aa860bda29c62207a6726837952b")
+-Mapping("7979dd6089ee5cba39cfbe6e880a3edeb7fff788","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("7bddce693cec4ae4eb6970ed91289815b316cff3","cae91d7c8c21aa860bda29c62207a6726837952b")
+-Mapping("7d2f75a953b5645d3a336b2978b48b60d310bf54","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("7de2e6dc828473b60aefe4d2140a602cbeb6d6f9","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("801d2682df6cac505916644ebe678c9105f4c418","dd56a6ad0845b76509c4f8967e8ca476471ab7e0")
+-Mapping("8492b6aa4545e3e86f3b144c9a3834c31c612e38","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("8da2bcac5db1e091b90cceb19d0496f0f7501c88","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("915b003e32ca169c5c9b907a5457bc03582d5f67","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("924da295c3c1e697e96e359435c4052f3c6d8b56","8128817119e479b0610685e3fc7a6ff21cde5abc")
+-Mapping("97e3a2401e4b2f659d69ed0c0822cae04e3495b7","cae91d7c8c21aa860bda29c62207a6726837952b")
+-Mapping("98f0a9128f0fc6545de14a5de8f0e91675045e56","0f02309e4b0ea05ee905205278fb6d131341c41f")
+-Mapping("9c6904ca1e4ab95f6c48973dea718326735ad564","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("a0c325980367d5ee981145e31c70585acee40cd2","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("a1e29daf1a9ca4e26719887b0c934de5d1695031","87aee45988e81cb1a7bc9881aa7172d4f9caefd4")
+-Mapping("a43eb4e774f6d51b7012bba3d25212819ab0e3dc","552eda70d33cead1398adfecce1a75e7a61e3daf")
+-Mapping("a967611d8ffececb5ed0ecf6a205b464d7a5a31e","cae91d7c8c21aa860bda29c62207a6726837952b")
+-Mapping("ab0b87458f8c5d4762feae5e9d5c93ce6f644f6b","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("ad7fe6521b8a59d84102113ad660edb21de2cba6","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("ae33aa74f4e03b11a9a82e10dbf7369c3ae6bd04","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("af000a7bbffcaf5e75ff97b245fa5a413062acc1","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("b12b4e4e3266644d519647afc2943cefa2026e07","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("b324fa7204dbdc17544d4402ffd0b1964df326f7","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("b5ba5923f8a15f7f06c660442ad895aff15599c0","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("b622c3e0856767d8e53cf141e2e0a7b6d72a198b","8128817119e479b0610685e3fc7a6ff21cde5abc")
+-Mapping("b678600ac94ee9cf3e679bb6128cd77b169231cb","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("b9a93fad92a3411a0e452e339af06703e31c1464","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("bb4a79b087158f396b984bdf552d2c90890b12a3","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("bd938166d6dabc689777555d5046dce893555eb7","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("bf5da36f1dfae45941ec39ef67a41fdbd22c1a50","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("c2aaad4e2288647c5235754a5e1439a5124978fe","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("c66d2380a810c9a2b3dbb4f93a830b101ee49cc2","ce943eb369c9bdd0aef4917675e515f39f3b4a1e")
+-Mapping("c8b8eb1fda90998832ba1cdf96a34dc676f7124b","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("c9629d61c6947030666379a6f46445f07849bbd9","c1fb50f5d377a41dd5833e4621e9a14879647503")
+-Mapping("cd6a400175cc230008a5094a8bbb44a3794f0465","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("cda7c1cf2463443aee4a2f51a5141bc7ce4a4f97","78ab18199d69bcc801668bfbeea8190b2c73a939")
+-Mapping("d5a91e69582b63f19192ad860df0f7a9a8530f56","87aee45988e81cb1a7bc9881aa7172d4f9caefd4")
+-Mapping("d7a71687ef1a9fa5665944608d5bad58d98a9684","87aee45988e81cb1a7bc9881aa7172d4f9caefd4")
+-Mapping("d91f8ab0f58fa123857d96b9e151fc5185f5ff08","9f935c8dd891ec6eb0809b8438656d1b39c2e2f5")
+-Mapping("dd6e8d45e183861d44ed91a99f0a50403b2776a3","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("e0fd34bba05cb43119abd6a45d3c33fcdf48c6b1","62b19c627ebde2bbfa6021de146c502124da7975")
+-Mapping("e1195c24bb567019d7cdc65bf5a4c642e38475d1","161c541afdd18423940e97c7a02b517b1f6d61be")
+-Mapping("ec872dc8a3f008299ca1508105ee064d1f0f0367","80d733385aa2ff150a5d6f83ecfe55afc7e19e68")
+-Mapping("ed7c56796ef17f13227a50dc1a72a018b1d5e33f","78ab18199d69bcc801668bfbeea8190b2c73a939")
@@ -0,0 +1,1148 @@
+// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+//! Buffering wrappers for I/O traits
+use prelude::v1::*;
+use io::prelude::*;
+use marker::Reflect;
+use cmp;
+use error;
+use fmt;
+use io::{self, DEFAULT_BUF_SIZE, Error, ErrorKind, SeekFrom};
+use memchr;
+/// The `BufReader` struct adds buffering to any reader.
+///
+/// It can be excessively inefficient to work directly with a `Read` instance.
+/// For example, every call to `read` on `TcpStream` results in a system call.
+/// A `BufReader` performs large, infrequent reads on the underlying `Read`
+/// and maintains an in-memory buffer of the results.
+/// # Examples
+/// ```
+/// use std::io::prelude::*;
+/// use std::io::BufReader;
+/// use std::fs::File;
+/// # fn foo() -> std::io::Result<()> {
+/// let mut f = try!(File::open("log.txt"));
+/// let mut reader = BufReader::new(f);
+/// let mut line = String::new();
+/// let len = try!(reader.read_line(&mut line));
+/// println!("First line is {} bytes long", len);
+/// # Ok(())
+/// # }
+#[stable(feature = "rust1", since = "1.0.0")]
+pub struct BufReader<R> {
+ inner: R,
+ buf: Box<[u8]>,
+ pos: usize,
+ cap: usize,
+}
+impl<R: Read> BufReader<R> {
+ /// Creates a new `BufReader` with a default buffer capacity.
+ ///
+ /// # Examples
+ /// ```
+ /// use std::io::BufReader;
+ /// use std::fs::File;
+ /// # fn foo() -> std::io::Result<()> {
+ /// let mut f = try!(File::open("log.txt"));
+ /// let mut reader = BufReader::new(f);
+ /// # Ok(())
+ /// # }
+ #[stable(feature = "rust1", since = "1.0.0")]
+ pub fn new(inner: R) -> BufReader<R> {
+ BufReader::with_capacity(DEFAULT_BUF_SIZE, inner)
+ }
+ /// Creates a new `BufReader` with the specified buffer capacity.
+ /// Creating a buffer with ten bytes of capacity:
+ /// let mut reader = BufReader::with_capacity(10, f);
+ pub fn with_capacity(cap: usize, inner: R) -> BufReader<R> {
+ BufReader {
+ inner: inner,
+ buf: vec![0; cap].into_boxed_slice(),
+ pos: 0,
+ cap: 0,
+ /// Gets a reference to the underlying reader.
+ /// It is inadvisable to directly read from the underlying reader.
+ /// let mut f1 = try!(File::open("log.txt"));
+ /// let mut reader = BufReader::new(f1);
+ /// let f2 = reader.get_ref();
+ pub fn get_ref(&self) -> &R { &self.inner }
+ /// Gets a mutable reference to the underlying reader.
+ /// let f2 = reader.get_mut();
+ pub fn get_mut(&mut self) -> &mut R { &mut self.inner }
+ /// Unwraps this `BufReader`, returning the underlying reader.
+ /// Note that any leftover data in the internal buffer is lost.
+ /// let f2 = reader.into_inner();
+ pub fn into_inner(self) -> R { self.inner }
+impl<R: Read> Read for BufReader<R> {
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ // If we don't have any buffered data and we're doing a massive read
+ // (larger than our internal buffer), bypass our internal buffer
+ // entirely.
+ if self.pos == self.cap && buf.len() >= self.buf.len() {
+ return self.inner.read(buf);
+ let nread = {
+ let mut rem = self.fill_buf()?;
+ rem.read(buf)?
+ };
+ self.consume(nread);
+ Ok(nread)
+impl<R: Read> BufRead for BufReader<R> {
+ fn fill_buf(&mut self) -> io::Result<&[u8]> {
+ // If we've reached the end of our internal buffer then we need to fetch
+ // some more data from the underlying reader.
+ if self.pos == self.cap {
+ self.cap = self.inner.read(&mut self.buf)?;
+ self.pos = 0;
+ Ok(&self.buf[self.pos..self.cap])
+ fn consume(&mut self, amt: usize) {
+ self.pos = cmp::min(self.pos + amt, self.cap);
+impl<R> fmt::Debug for BufReader<R> where R: fmt::Debug {
+ fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
+ fmt.debug_struct("BufReader")
+ .field("reader", &self.inner)
+ .field("buffer", &format_args!("{}/{}", self.cap - self.pos, self.buf.len()))
+ .finish()
+impl<R: Seek> Seek for BufReader<R> {
+ /// Seek to an offset, in bytes, in the underlying reader.
+ /// The position used for seeking with `SeekFrom::Current(_)` is the
+ /// position the underlying reader would be at if the `BufReader` had no
+ /// internal buffer.
+ /// Seeking always discards the internal buffer, even if the seek position
+ /// would otherwise fall within it. This guarantees that calling
+ /// `.unwrap()` immediately after a seek yields the underlying reader at
+ /// the same position.
+ /// See `std::io::Seek` for more details.
+ /// Note: In the edge case where you're seeking with `SeekFrom::Current(n)`
+ /// where `n` minus the internal buffer length underflows an `i64`, two
+ /// seeks will be performed instead of one. If the second seek returns
+ /// `Err`, the underlying reader will be left at the same position it would
+ /// have if you seeked to `SeekFrom::Current(0)`.
+ fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
+ let result: u64;
+ if let SeekFrom::Current(n) = pos {
+ let remainder = (self.cap - self.pos) as i64;
+ // it should be safe to assume that remainder fits within an i64 as the alternative
+ // means we managed to allocate 8 ebibytes and that's absurd.
+ // But it's not out of the realm of possibility for some weird underlying reader to
+ // support seeking by i64::min_value() so we need to handle underflow when subtracting
+ // remainder.
+ if let Some(offset) = n.checked_sub(remainder) {
+ result = self.inner.seek(SeekFrom::Current(offset))?;
+ } else {
+ // seek backwards by our remainder, and then by the offset
+ self.inner.seek(SeekFrom::Current(-remainder))?;
+ self.pos = self.cap; // empty the buffer
+ result = self.inner.seek(SeekFrom::Current(n))?;
+ // Seeking with Start/End doesn't care about our buffer length.
+ result = self.inner.seek(pos)?;
+ Ok(result)
+/// Wraps a writer and buffers its output.
+/// It can be excessively inefficient to work directly with something that
+/// implements `Write`. For example, every call to `write` on `TcpStream`
+/// results in a system call. A `BufWriter` keeps an in-memory buffer of data
+/// and writes it to an underlying writer in large, infrequent batches.
+/// The buffer will be written out when the writer is dropped.
+/// Let's write the numbers one through ten to a `TcpStream`:
+/// ```no_run
+/// use std::net::TcpStream;
+/// let mut stream = TcpStream::connect("127.0.0.1:34254").unwrap();
+/// for i in 1..10 {
+/// stream.write(&[i]).unwrap();
+/// }
+/// Because we're not buffering, we write each one in turn, incurring the
+/// overhead of a system call per byte written. We can fix this with a
+/// `BufWriter`:
+/// use std::io::BufWriter;
+/// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+/// By wrapping the stream with a `BufWriter`, these ten writes are all grouped
+/// together by the buffer, and will all be written out in one system call when
+/// the `stream` is dropped.
+pub struct BufWriter<W: Write> {
+ inner: Option<W>,
+ buf: Vec<u8>,
+ // #30888: If the inner writer panics in a call to write, we don't want to
+ // write the buffered data a second time in BufWriter's destructor. This
+ // flag tells the Drop impl if it should skip the flush.
+ panicked: bool,
+/// An error returned by `into_inner` which combines an error that
+/// happened while writing out the buffer, and the buffered writer object
+/// which may be used to recover from the condition.
+/// // do stuff with the stream
+/// // we want to get our `TcpStream` back, so let's try:
+/// let stream = match stream.into_inner() {
+/// Ok(s) => s,
+/// Err(e) => {
+/// // Here, e is an IntoInnerError
+/// panic!("An error occurred");
+/// };
+#[derive(Debug)]
+pub struct IntoInnerError<W>(W, Error);
+impl<W: Write> BufWriter<W> {
+ /// Creates a new `BufWriter` with a default buffer capacity.
+ /// ```no_run
+ /// use std::io::BufWriter;
+ /// use std::net::TcpStream;
+ /// let mut buffer = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ pub fn new(inner: W) -> BufWriter<W> {
+ BufWriter::with_capacity(DEFAULT_BUF_SIZE, inner)
+ /// Creates a new `BufWriter` with the specified buffer capacity.
+ /// Creating a buffer with a buffer of a hundred bytes.
+ /// let stream = TcpStream::connect("127.0.0.1:34254").unwrap();
+ /// let mut buffer = BufWriter::with_capacity(100, stream);
+ pub fn with_capacity(cap: usize, inner: W) -> BufWriter<W> {
+ BufWriter {
+ inner: Some(inner),
+ buf: Vec::with_capacity(cap),
+ panicked: false,
+ fn flush_buf(&mut self) -> io::Result<()> {
+ let mut written = 0;
+ let len = self.buf.len();
+ let mut ret = Ok(());
+ while written < len {
+ self.panicked = true;
+ let r = self.inner.as_mut().unwrap().write(&self.buf[written..]);
+ self.panicked = false;
+ match r {
+ Ok(0) => {
+ ret = Err(Error::new(ErrorKind::WriteZero,
+ "failed to write the buffered data"));
+ break;
+ Ok(n) => written += n,
+ Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
+ Err(e) => { ret = Err(e); break }
+ if written > 0 {
+ self.buf.drain(..written);
+ ret
+ /// Gets a reference to the underlying writer.
+ /// // we can use reference just like buffer
+ /// let reference = buffer.get_ref();
+ pub fn get_ref(&self) -> &W { self.inner.as_ref().unwrap() }
+ /// Gets a mutable reference to the underlying writer.
+ /// It is inadvisable to directly write to the underlying writer.
+ /// let reference = buffer.get_mut();
+ pub fn get_mut(&mut self) -> &mut W { self.inner.as_mut().unwrap() }
+ /// Unwraps this `BufWriter`, returning the underlying writer.
+ /// The buffer is written out before returning the writer.
+ /// // unwrap the TcpStream and flush the buffer
+ /// let stream = buffer.into_inner().unwrap();
+ pub fn into_inner(mut self) -> Result<W, IntoInnerError<BufWriter<W>>> {
+ match self.flush_buf() {
+ Err(e) => Err(IntoInnerError(self, e)),
+ Ok(()) => Ok(self.inner.take().unwrap())
+impl<W: Write> Write for BufWriter<W> {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
+ if self.buf.len() + buf.len() > self.buf.capacity() {
+ self.flush_buf()?;
+ if buf.len() >= self.buf.capacity() {
+ let r = self.inner.as_mut().unwrap().write(buf);
+ r
+ let amt = cmp::min(buf.len(), self.buf.capacity());
+ Write::write(&mut self.buf, &buf[..amt])
+ fn flush(&mut self) -> io::Result<()> {
+ self.flush_buf().and_then(|()| self.get_mut().flush())
+impl<W: Write> fmt::Debug for BufWriter<W> where W: fmt::Debug {
+ fmt.debug_struct("BufWriter")
+ .field("writer", &self.inner.as_ref().unwrap())
+ .field("buffer", &format_args!("{}/{}", self.buf.len(), self.buf.capacity()))
+impl<W: Write + Seek> Seek for BufWriter<W> {
+ /// Seek to the offset, in bytes, in the underlying writer.
+ /// Seeking always writes out the internal buffer before seeking.
+ self.flush_buf().and_then(|_| self.get_mut().seek(pos))
+impl<W: Write> Drop for BufWriter<W> {
+ fn drop(&mut self) {
+ if self.inner.is_some() && !self.panicked {
+ // dtors should not panic, so we ignore a failed flush
+ let _r = self.flush_buf();
+impl<W> IntoInnerError<W> {
+ /// Returns the error which caused the call to `into_inner()` to fail.
+ /// This error was returned when attempting to write the internal buffer.
+ /// let mut stream = BufWriter::new(TcpStream::connect("127.0.0.1:34254").unwrap());
+ /// // do stuff with the stream
+ /// // we want to get our `TcpStream` back, so let's try:
+ /// let stream = match stream.into_inner() {
+ /// Ok(s) => s,
+ /// Err(e) => {
+ /// // Here, e is an IntoInnerError, let's log the inner error.
+ /// //
+ /// // We'll just 'log' to stdout for this example.
+ /// println!("{}", e.error());
+ /// panic!("An unexpected error occurred.");
+ /// }
+ /// };
+ pub fn error(&self) -> &Error { &self.1 }
+ /// Returns the buffered writer instance which generated the error.
+ /// The returned object can be used for error recovery, such as
+ /// re-inspecting the buffer.
+ /// // Here, e is an IntoInnerError, let's re-examine the buffer:
+ /// let buffer = e.into_inner();
+ /// // do stuff to try to recover
+ /// // afterwards, let's just return the stream
+ /// buffer.into_inner().unwrap()
+ pub fn into_inner(self) -> W { self.0 }
+impl<W> From<IntoInnerError<W>> for Error {
+ fn from(iie: IntoInnerError<W>) -> Error { iie.1 }
+impl<W: Reflect + Send + fmt::Debug> error::Error for IntoInnerError<W> {
+ fn description(&self) -> &str {
+ error::Error::description(self.error())
+impl<W> fmt::Display for IntoInnerError<W> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.error().fmt(f)
+/// Wraps a writer and buffers output to it, flushing whenever a newline
+/// (`0x0a`, `'\n'`) is detected.
+/// The [`BufWriter`][bufwriter] struct wraps a writer and buffers its output.
+/// But it only does this batched write when it goes out of scope, or when the
+/// internal buffer is full. Sometimes, you'd prefer to write each line as it's
+/// completed, rather than the entire buffer at once. Enter `LineWriter`. It
+/// does exactly that.
+/// [bufwriter]: struct.BufWriter.html
+/// If there's still a partial line in the buffer when the `LineWriter` is
+/// dropped, it will flush those contents.
+/// We can use `LineWriter` to write one line at a time, significantly
+/// reducing the number of actual writes to the file.
+/// use std::io::LineWriter;
+/// let road_not_taken = b"I shall be telling this with a sigh
+/// Somewhere ages and ages hence:
+/// Two roads diverged in a wood, and I -
+/// I took the one less traveled by,
+/// And that has made all the difference.";
+/// let file = try!(File::create("poem.txt"));
+/// let mut file = LineWriter::new(file);
+/// for &byte in road_not_taken.iter() {
+/// file.write(&[byte]).unwrap();
+/// // let's check we did the right thing.
+/// let mut file = try!(File::open("poem.txt"));
+/// let mut contents = String::new();
+/// try!(file.read_to_string(&mut contents));
+/// assert_eq!(contents.as_bytes(), &road_not_taken[..]);
+pub struct LineWriter<W: Write> {
+ inner: BufWriter<W>,
+impl<W: Write> LineWriter<W> {
+ /// Creates a new `LineWriter`.
+ /// use std::io::LineWriter;
+ /// let file = try!(File::create("poem.txt"));
+ /// let file = LineWriter::new(file);
+ pub fn new(inner: W) -> LineWriter<W> {
+ // Lines typically aren't that long, don't use a giant buffer
+ LineWriter::with_capacity(1024, inner)
+ /// Creates a new `LineWriter` with a specified capacity for the internal
+ /// buffer.
+ /// let file = LineWriter::with_capacity(100, file);
+ pub fn with_capacity(cap: usize, inner: W) -> LineWriter<W> {
+ LineWriter { inner: BufWriter::with_capacity(cap, inner) }
+ /// let reference = file.get_ref();
+ pub fn get_ref(&self) -> &W { self.inner.get_ref() }
+ /// Caution must be taken when calling methods on the mutable reference
+ /// returned as extra writes could corrupt the output stream.
+ /// let mut file = LineWriter::new(file);
+ /// // we can use reference just like file
+ /// let reference = file.get_mut();
+ pub fn get_mut(&mut self) -> &mut W { self.inner.get_mut() }
+ /// Unwraps this `LineWriter`, returning the underlying writer.
+ /// The internal buffer is written out before returning the writer.
+ /// let writer: LineWriter<File> = LineWriter::new(file);
+ /// let file: File = try!(writer.into_inner());
+ pub fn into_inner(self) -> Result<W, IntoInnerError<LineWriter<W>>> {
+ self.inner.into_inner().map_err(|IntoInnerError(buf, e)| {
+ IntoInnerError(LineWriter { inner: buf }, e)
+ })
+impl<W: Write> Write for LineWriter<W> {
+ match memchr::memrchr(b'\n', buf) {
+ Some(i) => {
+ let n = self.inner.write(&buf[..i + 1])?;
+ if n != i + 1 || self.inner.flush().is_err() {
+ // Do not return errors on partial writes.
+ return Ok(n);
+ self.inner.write(&buf[i + 1..]).map(|i| n + i)
+ None => self.inner.write(buf),
+ fn flush(&mut self) -> io::Result<()> { self.inner.flush() }
+impl<W: Write> fmt::Debug for LineWriter<W> where W: fmt::Debug {
+ fmt.debug_struct("LineWriter")
+ .field("writer", &self.inner.inner)
+ .field("buffer",
+ &format_args!("{}/{}", self.inner.buf.len(), self.inner.buf.capacity()))
+#[cfg(test)]
+mod tests {
+ use prelude::v1::*;
+ use io::prelude::*;
+ use io::{self, BufReader, BufWriter, LineWriter, SeekFrom};
+ use sync::atomic::{AtomicUsize, Ordering};
+ use thread;
+ use test;
+ /// A dummy reader intended at testing short-reads propagation.
+ pub struct ShortReader {
+ lengths: Vec<usize>,
+ impl Read for ShortReader {
+ fn read(&mut self, _: &mut [u8]) -> io::Result<usize> {
+ if self.lengths.is_empty() {
+ Ok(0)
+ Ok(self.lengths.remove(0))
+ #[test]
+ fn test_buffered_reader() {
+ let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4];
+ let mut reader = BufReader::with_capacity(2, inner);
+ let mut buf = [0, 0, 0];
+ let nread = reader.read(&mut buf);
+ assert_eq!(nread.unwrap(), 3);
+ let b: &[_] = &[5, 6, 7];
+ assert_eq!(buf, b);
+ let mut buf = [0, 0];
+ assert_eq!(nread.unwrap(), 2);
+ let b: &[_] = &[0, 1];
+ let mut buf = [0];
+ assert_eq!(nread.unwrap(), 1);
+ let b: &[_] = &[2];
+ let b: &[_] = &[3, 0, 0];
+ let b: &[_] = &[4, 0, 0];
+ assert_eq!(reader.read(&mut buf).unwrap(), 0);
+ fn test_buffered_reader_seek() {
+ let mut reader = BufReader::with_capacity(2, io::Cursor::new(inner));
+ assert_eq!(reader.seek(SeekFrom::Start(3)).ok(), Some(3));
+ assert_eq!(reader.fill_buf().ok(), Some(&[0, 1][..]));
+ assert_eq!(reader.seek(SeekFrom::Current(0)).ok(), Some(3));
+ assert_eq!(reader.seek(SeekFrom::Current(1)).ok(), Some(4));
+ assert_eq!(reader.fill_buf().ok(), Some(&[1, 2][..]));
+ reader.consume(1);
+ assert_eq!(reader.seek(SeekFrom::Current(-2)).ok(), Some(3));
+ fn test_buffered_reader_seek_underflow() {
+ // gimmick reader that yields its position modulo 256 for each byte
+ struct PositionReader {
+ pos: u64
+ impl Read for PositionReader {
+ let len = buf.len();
+ for x in buf {
+ *x = self.pos as u8;
+ self.pos = self.pos.wrapping_add(1);
+ Ok(len)
+ impl Seek for PositionReader {
+ match pos {
+ SeekFrom::Start(n) => {
+ self.pos = n;
+ SeekFrom::Current(n) => {
+ self.pos = self.pos.wrapping_add(n as u64);
+ SeekFrom::End(n) => {
+ self.pos = u64::max_value().wrapping_add(n as u64);
+ Ok(self.pos)
+ let mut reader = BufReader::with_capacity(5, PositionReader { pos: 0 });
+ assert_eq!(reader.fill_buf().ok(), Some(&[0, 1, 2, 3, 4][..]));
+ assert_eq!(reader.seek(SeekFrom::End(-5)).ok(), Some(u64::max_value()-5));
+ assert_eq!(reader.fill_buf().ok().map(|s| s.len()), Some(5));
+ // the following seek will require two underlying seeks
+ let expected = 9223372036854775802;
+ assert_eq!(reader.seek(SeekFrom::Current(i64::min_value())).ok(), Some(expected));
+ // seeking to 0 should empty the buffer.
+ assert_eq!(reader.seek(SeekFrom::Current(0)).ok(), Some(expected));
+ assert_eq!(reader.get_ref().pos, expected);
+ fn test_buffered_writer() {
+ let inner = Vec::new();
+ let mut writer = BufWriter::with_capacity(2, inner);
+ writer.write(&[0, 1]).unwrap();
+ assert_eq!(*writer.get_ref(), [0, 1]);
+ writer.write(&[2]).unwrap();
+ writer.write(&[3]).unwrap();
+ writer.flush().unwrap();
+ assert_eq!(*writer.get_ref(), [0, 1, 2, 3]);
+ writer.write(&[4]).unwrap();
+ writer.write(&[5]).unwrap();
+ writer.write(&[6]).unwrap();
+ assert_eq!(*writer.get_ref(), [0, 1, 2, 3, 4, 5]);
+ writer.write(&[7, 8]).unwrap();
+ assert_eq!(*writer.get_ref(), [0, 1, 2, 3, 4, 5, 6, 7, 8]);
+ writer.write(&[9, 10, 11]).unwrap();
+ assert_eq!(*writer.get_ref(), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]);
+ fn test_buffered_writer_inner_flushes() {
+ let mut w = BufWriter::with_capacity(3, Vec::new());
+ w.write(&[0, 1]).unwrap();
+ assert_eq!(*w.get_ref(), []);
+ let w = w.into_inner().unwrap();
+ assert_eq!(w, [0, 1]);
+ fn test_buffered_writer_seek() {
+ let mut w = BufWriter::with_capacity(3, io::Cursor::new(Vec::new()));
+ w.write_all(&[0, 1, 2, 3, 4, 5]).unwrap();
+ w.write_all(&[6, 7]).unwrap();
+ assert_eq!(w.seek(SeekFrom::Current(0)).ok(), Some(8));
+ assert_eq!(&w.get_ref().get_ref()[..], &[0, 1, 2, 3, 4, 5, 6, 7][..]);
+ assert_eq!(w.seek(SeekFrom::Start(2)).ok(), Some(2));
+ w.write_all(&[8, 9]).unwrap();
+ assert_eq!(&w.into_inner().unwrap().into_inner()[..], &[0, 1, 8, 9, 4, 5, 6, 7]);
+ fn test_read_until() {
+ let inner: &[u8] = &[0, 1, 2, 1, 0];
+ let mut v = Vec::new();
+ reader.read_until(0, &mut v).unwrap();
+ assert_eq!(v, [0]);
+ v.truncate(0);
+ reader.read_until(2, &mut v).unwrap();
+ assert_eq!(v, [1, 2]);
+ reader.read_until(1, &mut v).unwrap();
+ assert_eq!(v, [1]);
+ reader.read_until(8, &mut v).unwrap();
+ reader.read_until(9, &mut v).unwrap();
+ assert_eq!(v, []);
+ fn test_line_buffer_fail_flush() {
+ // Issue #32085
+ struct FailFlushWriter<'a>(&'a mut Vec<u8>);
+ impl<'a> Write for FailFlushWriter<'a> {
+ self.0.extend_from_slice(buf);
+ Ok(buf.len())
+ Err(io::Error::new(io::ErrorKind::Other, "flush failed"))
+ let mut buf = Vec::new();
+ {
+ let mut writer = LineWriter::new(FailFlushWriter(&mut buf));
+ let to_write = b"abc\ndef";
+ if let Ok(written) = writer.write(to_write) {
+ assert!(written < to_write.len(), "didn't flush on new line");
+ // PASS
+ return;
+ assert!(buf.is_empty(), "write returned an error but wrote data");
+ fn test_line_buffer() {
+ let mut writer = LineWriter::new(Vec::new());
+ writer.write(&[0]).unwrap();
+ assert_eq!(*writer.get_ref(), []);
+ writer.write(&[1]).unwrap();
+ writer.write(&[0, b'\n', 1, b'\n', 2]).unwrap();
+ assert_eq!(*writer.get_ref(), [0, 1, 0, b'\n', 1, b'\n']);
+ assert_eq!(*writer.get_ref(), [0, 1, 0, b'\n', 1, b'\n', 2]);
+ writer.write(&[3, b'\n']).unwrap();
+ assert_eq!(*writer.get_ref(), [0, 1, 0, b'\n', 1, b'\n', 2, 3, b'\n']);
+ fn test_read_line() {
+ let in_buf: &[u8] = b"a\nb\nc";
+ let mut reader = BufReader::with_capacity(2, in_buf);
+ let mut s = String::new();
+ reader.read_line(&mut s).unwrap();
+ assert_eq!(s, "a\n");
+ s.truncate(0);
+ assert_eq!(s, "b\n");
+ assert_eq!(s, "c");
+ assert_eq!(s, "");
+ fn test_lines() {
+ let reader = BufReader::with_capacity(2, in_buf);
+ let mut it = reader.lines();
+ assert_eq!(it.next().unwrap().unwrap(), "a".to_string());
+ assert_eq!(it.next().unwrap().unwrap(), "b".to_string());
+ assert_eq!(it.next().unwrap().unwrap(), "c".to_string());
+ assert!(it.next().is_none());
+ fn test_short_reads() {
+ let inner = ShortReader{lengths: vec![0, 1, 2, 0, 1, 0]};
+ let mut reader = BufReader::new(inner);
+ assert_eq!(reader.read(&mut buf).unwrap(), 1);
+ assert_eq!(reader.read(&mut buf).unwrap(), 2);
+ fn read_char_buffered() {
+ let buf = [195, 159];
+ let reader = BufReader::with_capacity(1, &buf[..]);
+ assert_eq!(reader.chars().next().unwrap().unwrap(), 'ß');
+ fn test_chars() {
+ let buf = [195, 159, b'a'];
+ let mut it = reader.chars();
+ assert_eq!(it.next().unwrap().unwrap(), 'ß');
+ assert_eq!(it.next().unwrap().unwrap(), 'a');
+ #[should_panic]
+ fn dont_panic_in_drop_on_panicked_flush() {
+ struct FailFlushWriter;
+ impl Write for FailFlushWriter {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> { Ok(buf.len()) }
+ Err(io::Error::last_os_error())
+ let writer = FailFlushWriter;
+ let _writer = BufWriter::new(writer);
+ // If writer panics *again* due to the flush error then the process will
+ // abort.
+ panic!();
+ fn panic_in_write_doesnt_flush_in_drop() {
+ static WRITES: AtomicUsize = AtomicUsize::new(0);
+ struct PanicWriter;
+ impl Write for PanicWriter {
+ fn write(&mut self, _: &[u8]) -> io::Result<usize> {
+ WRITES.fetch_add(1, Ordering::SeqCst);
+ fn flush(&mut self) -> io::Result<()> { Ok(()) }
+ thread::spawn(|| {
+ let mut writer = BufWriter::new(PanicWriter);
+ let _ = writer.write(b"hello world");
+ let _ = writer.flush();
+ }).join().err().unwrap();
+ assert_eq!(WRITES.load(Ordering::SeqCst), 1);
+ #[bench]
+ fn bench_buffered_reader(b: &mut test::Bencher) {
+ b.iter(|| {
+ BufReader::new(io::empty())
+ });
+ fn bench_buffered_writer(b: &mut test::Bencher) {
+ BufWriter::new(io::sink())
@@ -0,0 +1,583 @@
+// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
+use io::{self, SeekFrom, Error, ErrorKind};
+/// A `Cursor` wraps another type and provides it with a
+/// [`Seek`](trait.Seek.html) implementation.
+/// Cursors are typically used with in-memory buffers to allow them to
+/// implement `Read` and/or `Write`, allowing these buffers to be used
+/// anywhere you might use a reader or writer that does actual I/O.
+/// The standard library implements some I/O traits on various types which
+/// are commonly used as a buffer, like `Cursor<Vec<u8>>` and `Cursor<&[u8]>`.
+/// We may want to write bytes to a [`File`][file] in our production
+/// code, but use an in-memory buffer in our tests. We can do this with
+/// `Cursor`:
+/// [file]: ../fs/struct.File.html
+/// use std::io::{self, SeekFrom};
+/// // a library function we've written
+/// fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
+/// try!(writer.seek(SeekFrom::End(-10)));
+/// for i in 0..10 {
+/// try!(writer.write(&[i]));
+/// // all went well
+/// Ok(())
+/// # fn foo() -> io::Result<()> {
+/// // Here's some code that uses this library function.
+/// //
+/// // We might want to use a BufReader here for efficiency, but let's
+/// // keep this example focused.
+/// let mut file = try!(File::create("foo.txt"));
+/// try!(write_ten_bytes_at_end(&mut file));
+/// // now let's write a test
+/// #[test]
+/// fn test_writes_bytes() {
+/// // setting up a real File is much more slow than an in-memory buffer,
+/// // let's use a cursor instead
+/// use std::io::Cursor;
+/// let mut buff = Cursor::new(vec![0; 15]);
+/// write_ten_bytes_at_end(&mut buff).unwrap();
+/// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
+#[derive(Clone, Debug)]
+pub struct Cursor<T> {
+ inner: T,
+ pos: u64,
+impl<T> Cursor<T> {
+ /// Creates a new cursor wrapping the provided underlying I/O object.
+ /// use std::io::Cursor;
+ /// let buff = Cursor::new(Vec::new());
+ /// # fn force_inference(_: &Cursor<Vec<u8>>) {}
+ /// # force_inference(&buff);
+ pub fn new(inner: T) -> Cursor<T> {
+ Cursor { pos: 0, inner: inner }
+ /// Consumes this cursor, returning the underlying value.
+ /// let vec = buff.into_inner();
+ pub fn into_inner(self) -> T { self.inner }
+ /// Gets a reference to the underlying value in this cursor.
+ /// let reference = buff.get_ref();
+ pub fn get_ref(&self) -> &T { &self.inner }
+ /// Gets a mutable reference to the underlying value in this cursor.
+ /// Care should be taken to avoid modifying the internal I/O state of the
+ /// underlying value as it may corrupt this cursor's position.
+ /// let mut buff = Cursor::new(Vec::new());
+ /// let reference = buff.get_mut();
+ pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
+ /// Returns the current position of this cursor.
+ /// use std::io::prelude::*;
+ /// use std::io::SeekFrom;
+ /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);
+ /// assert_eq!(buff.position(), 0);
+ /// buff.seek(SeekFrom::Current(2)).unwrap();
+ /// assert_eq!(buff.position(), 2);
+ /// buff.seek(SeekFrom::Current(-1)).unwrap();
+ /// assert_eq!(buff.position(), 1);
+ pub fn position(&self) -> u64 { self.pos }
+ /// Sets the position of this cursor.
+ /// buff.set_position(2);
+ /// buff.set_position(4);
+ /// assert_eq!(buff.position(), 4);
+ pub fn set_position(&mut self, pos: u64) { self.pos = pos; }
+impl<T> io::Seek for Cursor<T> where T: AsRef<[u8]> {
+ fn seek(&mut self, style: SeekFrom) -> io::Result<u64> {
+ let pos = match style {
+ SeekFrom::Start(n) => { self.pos = n; return Ok(n) }
+ SeekFrom::End(n) => self.inner.as_ref().len() as i64 + n,
+ SeekFrom::Current(n) => self.pos as i64 + n,
+ if pos < 0 {
+ Err(Error::new(ErrorKind::InvalidInput,
+ "invalid seek to a negative position"))
+ self.pos = pos as u64;
+impl<T> Read for Cursor<T> where T: AsRef<[u8]> {
+ let n = Read::read(&mut self.fill_buf()?, buf)?;
+ self.pos += n as u64;
+ Ok(n)
+impl<T> BufRead for Cursor<T> where T: AsRef<[u8]> {
+ let amt = cmp::min(self.pos, self.inner.as_ref().len() as u64);
+ Ok(&self.inner.as_ref()[(amt as usize)..])
+ fn consume(&mut self, amt: usize) { self.pos += amt as u64; }
+impl<'a> Write for Cursor<&'a mut [u8]> {
+ fn write(&mut self, data: &[u8]) -> io::Result<usize> {
+ let pos = cmp::min(self.pos, self.inner.len() as u64);
+ let amt = (&mut self.inner[(pos as usize)..]).write(data)?;
+ self.pos += amt as u64;
+ Ok(amt)
+impl Write for Cursor<Vec<u8>> {
+ // Make sure the internal buffer is as least as big as where we
+ // currently are
+ let pos = self.position();
+ let amt = pos.saturating_sub(self.inner.len() as u64);
+ // use `resize` so that the zero filling is as efficient as possible
+ let len = self.inner.len();
+ self.inner.resize(len + amt as usize, 0);
+ // Figure out what bytes will be used to overwrite what's currently
+ // there (left), and what will be appended on the end (right)
+ let pos = pos as usize;
+ let space = self.inner.len() - pos;
+ let (left, right) = buf.split_at(cmp::min(space, buf.len()));
+ self.inner[pos..pos + left.len()].copy_from_slice(left);
+ self.inner.extend_from_slice(right);
+ // Bump us forward
+ self.set_position(pos + buf.len() as u64);
+#[stable(feature = "cursor_box_slice", since = "1.5.0")]
+impl Write for Cursor<Box<[u8]>> {
+ let amt = (&mut self.inner[(pos as usize)..]).write(buf)?;
+ use io::{Cursor, SeekFrom};
+ use vec::Vec;
+ fn test_vec_writer() {
+ let mut writer = Vec::new();
+ assert_eq!(writer.write(&[0]).unwrap(), 1);
+ assert_eq!(writer.write(&[1, 2, 3]).unwrap(), 3);
+ assert_eq!(writer.write(&[4, 5, 6, 7]).unwrap(), 4);
+ let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
+ assert_eq!(writer, b);
+ fn test_mem_writer() {
+ let mut writer = Cursor::new(Vec::new());
+ assert_eq!(&writer.get_ref()[..], b);
+ fn test_box_slice_writer() {
+ let mut writer = Cursor::new(vec![0u8; 9].into_boxed_slice());
+ assert_eq!(writer.position(), 0);
+ assert_eq!(writer.position(), 1);
+ assert_eq!(writer.position(), 8);
+ assert_eq!(writer.write(&[]).unwrap(), 0);
+ assert_eq!(writer.write(&[8, 9]).unwrap(), 1);
+ assert_eq!(writer.write(&[10]).unwrap(), 0);
+ let b: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8];
+ assert_eq!(&**writer.get_ref(), b);
+ fn test_buf_writer() {
+ let mut buf = [0 as u8; 9];
+ let mut writer = Cursor::new(&mut buf[..]);
+ fn test_buf_writer_seek() {
+ let mut buf = [0 as u8; 8];
+ assert_eq!(writer.write(&[1]).unwrap(), 1);
+ assert_eq!(writer.seek(SeekFrom::Start(2)).unwrap(), 2);
+ assert_eq!(writer.position(), 2);
+ assert_eq!(writer.write(&[2]).unwrap(), 1);
+ assert_eq!(writer.position(), 3);
+ assert_eq!(writer.seek(SeekFrom::Current(-2)).unwrap(), 1);
+ assert_eq!(writer.write(&[3]).unwrap(), 1);
+ assert_eq!(writer.seek(SeekFrom::End(-1)).unwrap(), 7);
+ assert_eq!(writer.position(), 7);
+ assert_eq!(writer.write(&[4]).unwrap(), 1);
+ let b: &[_] = &[1, 3, 2, 0, 0, 0, 0, 4];
+ fn test_buf_writer_error() {
+ let mut buf = [0 as u8; 2];
+ assert_eq!(writer.write(&[0, 0]).unwrap(), 1);
+ assert_eq!(writer.write(&[0, 0]).unwrap(), 0);
+ fn test_mem_reader() {
+ let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7));
+ let mut buf = [];
+ assert_eq!(reader.position(), 0);
+ assert_eq!(reader.position(), 1);
+ let b: &[_] = &[0];
+ let mut buf = [0; 4];
+ assert_eq!(reader.read(&mut buf).unwrap(), 4);
+ assert_eq!(reader.position(), 5);
+ let b: &[_] = &[1, 2, 3, 4];
+ assert_eq!(reader.read(&mut buf).unwrap(), 3);
+ assert_eq!(&buf[..3], b);
+ fn test_boxed_slice_reader() {
+ let mut reader = Cursor::new(vec!(0, 1, 2, 3, 4, 5, 6, 7).into_boxed_slice());
+ fn read_to_end() {
+ reader.read_to_end(&mut v).unwrap();
+ assert_eq!(v, [0, 1, 2, 3, 4, 5, 6, 7]);
+ fn test_slice_reader() {
+ let in_buf = vec![0, 1, 2, 3, 4, 5, 6, 7];
+ let mut reader = &mut &in_buf[..];
+ assert_eq!(reader.len(), 7);
+ assert_eq!(&buf[..], b);
+ assert_eq!(reader.len(), 3);
+ fn test_buf_reader() {
+ let mut reader = Cursor::new(&in_buf[..]);
+ fn test_read_char() {
+ let b = &b"Vi\xE1\xBB\x87t"[..];
+ let mut c = Cursor::new(b).chars();
+ assert_eq!(c.next().unwrap().unwrap(), 'V');
+ assert_eq!(c.next().unwrap().unwrap(), 'i');
+ assert_eq!(c.next().unwrap().unwrap(), 'ệ');
+ assert_eq!(c.next().unwrap().unwrap(), 't');
+ assert!(c.next().is_none());
+ fn test_read_bad_char() {
+ let b = &b"\x80"[..];
+ assert!(c.next().unwrap().is_err());
+ fn seek_past_end() {
+ let buf = [0xff];
+ let mut r = Cursor::new(&buf[..]);
+ assert_eq!(r.seek(SeekFrom::Start(10)).unwrap(), 10);
+ assert_eq!(r.read(&mut [0]).unwrap(), 0);
+ let mut r = Cursor::new(vec!(10));
+ let mut r = Cursor::new(&mut buf[..]);
+ assert_eq!(r.write(&[3]).unwrap(), 0);
+ let mut r = Cursor::new(vec![10].into_boxed_slice());
+ fn seek_before_0() {
+ assert!(r.seek(SeekFrom::End(-2)).is_err());
+ let mut r = Cursor::new(vec!(10).into_boxed_slice());
+ fn test_seekable_mem_writer() {
+ let mut writer = Cursor::new(Vec::<u8>::new());
+ assert_eq!(writer.seek(SeekFrom::Start(0)).unwrap(), 0);
+ assert_eq!(writer.write(&[3, 4]).unwrap(), 2);
+ let b: &[_] = &[3, 4, 2, 3, 4, 5, 6, 7];
+ assert_eq!(writer.seek(SeekFrom::Current(1)).unwrap(), 3);
+ assert_eq!(writer.write(&[0, 1]).unwrap(), 2);
+ let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 7];
+ assert_eq!(writer.write(&[1, 2]).unwrap(), 2);
+ let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2];
+ assert_eq!(writer.seek(SeekFrom::End(1)).unwrap(), 10);
+ let b: &[_] = &[3, 4, 2, 0, 1, 5, 6, 1, 2, 0, 1];
+ fn vec_seek_past_end() {
+ let mut r = Cursor::new(Vec::new());
+ assert_eq!(r.write(&[3]).unwrap(), 1);
+ fn vec_seek_before_0() {
@@ -0,0 +1,392 @@
+use boxed::Box;
+use convert::Into;
+use marker::{Send, Sync};
+use option::Option::{self, Some, None};
+use result;
+use sys;
+/// A specialized [`Result`](../result/enum.Result.html) type for I/O
+/// operations.
+/// This type is broadly used across `std::io` for any operation which may
+/// produce an error.
+/// This typedef is generally used to avoid writing out `io::Error` directly and
+/// is otherwise a direct mapping to `Result`.
+/// While usual Rust style is to import types directly, aliases of `Result`
+/// often are not, to make it easier to distinguish between them. `Result` is
+/// generally assumed to be `std::result::Result`, and so users of this alias
+/// will generally use `io::Result` instead of shadowing the prelude's import
+/// of `std::result::Result`.
+/// A convenience function that bubbles an `io::Result` to its caller:
+/// use std::io;
+/// fn get_string() -> io::Result<String> {
+/// let mut buffer = String::new();
+/// try!(io::stdin().read_line(&mut buffer));
+/// Ok(buffer)
+pub type Result<T> = result::Result<T, Error>;
+/// The error type for I/O operations of the `Read`, `Write`, `Seek`, and
+/// associated traits.
+/// Errors mostly originate from the underlying OS, but custom instances of
+/// `Error` can be created with crafted error messages and a particular value of
+/// `ErrorKind`.
+pub struct Error {
+ repr: Repr,
+enum Repr {
+ Os(i32),
+ Custom(Box<Custom>),
+struct Custom {
+ kind: ErrorKind,
+ error: Box<error::Error+Send+Sync>,
+/// A list specifying general categories of I/O error.
+/// This list is intended to grow over time and it is not recommended to
+/// exhaustively match against it.
+#[derive(Copy, PartialEq, Eq, Clone, Debug)]
+#[allow(deprecated)]
+pub enum ErrorKind {
+ /// An entity was not found, often a file.
+ NotFound,
+ /// The operation lacked the necessary privileges to complete.
+ PermissionDenied,
+ /// The connection was refused by the remote server.
+ ConnectionRefused,
+ /// The connection was reset by the remote server.
+ ConnectionReset,
+ /// The connection was aborted (terminated) by the remote server.
+ ConnectionAborted,
+ /// The network operation failed because it was not connected yet.
+ NotConnected,
+ /// A socket address could not be bound because the address is already in
+ /// use elsewhere.
+ AddrInUse,
+ /// A nonexistent interface was requested or the requested address was not
+ /// local.
+ AddrNotAvailable,
+ /// The operation failed because a pipe was closed.
+ BrokenPipe,
+ /// An entity already exists, often a file.
+ AlreadyExists,
+ /// The operation needs to block to complete, but the blocking operation was
+ /// requested to not occur.
+ WouldBlock,
+ /// A parameter was incorrect.
+ InvalidInput,
+ /// Data not valid for the operation were encountered.
+ /// Unlike `InvalidInput`, this typically means that the operation
+ /// parameters were valid, however the error was caused by malformed
+ /// input data.
+ /// For example, a function that reads a file into a string will error with
+ /// `InvalidData` if the file's contents are not valid UTF-8.
+ #[stable(feature = "io_invalid_data", since = "1.2.0")]
+ InvalidData,
+ /// The I/O operation's timeout expired, causing it to be canceled.
+ TimedOut,
+ /// An error returned when an operation could not be completed because a
+ /// call to `write` returned `Ok(0)`.
+ /// This typically means that an operation could only succeed if it wrote a
+ /// particular number of bytes but only a smaller number of bytes could be
+ /// written.
+ WriteZero,
+ /// This operation was interrupted.
+ /// Interrupted operations can typically be retried.
+ Interrupted,
+ /// Any I/O error not part of this list.
+ Other,
+ /// An error returned when an operation could not be completed because an
+ /// "end of file" was reached prematurely.
+ /// This typically means that an operation could only succeed if it read a
+ /// read.
+ #[stable(feature = "read_exact", since = "1.6.0")]
+ UnexpectedEof,
+ #[unstable(feature = "io_error_internals",
+ reason = "better expressed through extensible enums that this \
+ enum cannot be exhaustively matched against",
+ issue = "0")]
+ #[doc(hidden)]
+ __Nonexhaustive,
+impl Error {
+ /// Creates a new I/O error from a known kind of error as well as an
+ /// arbitrary error payload.
+ /// This function is used to generically create I/O errors which do not
+ /// originate from the OS itself. The `error` argument is an arbitrary
+ /// payload which will be contained in this `Error`.
+ /// use std::io::{Error, ErrorKind};
+ /// // errors can be created from strings
+ /// let custom_error = Error::new(ErrorKind::Other, "oh no!");
+ /// // errors can also be created from other errors
+ /// let custom_error2 = Error::new(ErrorKind::Interrupted, custom_error);
+ pub fn new<E>(kind: ErrorKind, error: E) -> Error
+ where E: Into<Box<error::Error+Send+Sync>>
+ Self::_new(kind, error.into())
+ fn _new(kind: ErrorKind, error: Box<error::Error+Send+Sync>) -> Error {
+ Error {
+ repr: Repr::Custom(Box::new(Custom {
+ kind: kind,
+ error: error,
+ }))
+ /// Returns an error representing the last OS error which occurred.
+ /// This function reads the value of `errno` for the target platform (e.g.
+ /// `GetLastError` on Windows) and will return a corresponding instance of
+ /// `Error` for the error code.
+ pub fn last_os_error() -> Error {
+ Error::from_raw_os_error(sys::os::errno() as i32)
+ /// Creates a new instance of an `Error` from a particular OS error code.
+ pub fn from_raw_os_error(code: i32) -> Error {
+ Error { repr: Repr::Os(code) }
+ /// Returns the OS error that this error represents (if any).
+ /// If this `Error` was constructed via `last_os_error` or
+ /// `from_raw_os_error`, then this function will return `Some`, otherwise
+ /// it will return `None`.
+ pub fn raw_os_error(&self) -> Option<i32> {
+ match self.repr {
+ Repr::Os(i) => Some(i),
+ Repr::Custom(..) => None,
+ /// Returns a reference to the inner error wrapped by this error (if any).
+ /// If this `Error` was constructed via `new` then this function will
+ /// return `Some`, otherwise it will return `None`.
+ #[stable(feature = "io_error_inner", since = "1.3.0")]
+ pub fn get_ref(&self) -> Option<&(error::Error+Send+Sync+'static)> {
+ Repr::Os(..) => None,
+ Repr::Custom(ref c) => Some(&*c.error),
+ /// Returns a mutable reference to the inner error wrapped by this error
+ /// (if any).
+ pub fn get_mut(&mut self) -> Option<&mut (error::Error+Send+Sync+'static)> {
+ Repr::Custom(ref mut c) => Some(&mut *c.error),
+ /// Consumes the `Error`, returning its inner error (if any).
+ pub fn into_inner(self) -> Option<Box<error::Error+Send+Sync>> {
+ Repr::Custom(c) => Some(c.error)
+ /// Returns the corresponding `ErrorKind` for this error.
+ pub fn kind(&self) -> ErrorKind {
+ Repr::Os(code) => sys::decode_error_kind(code),
+ Repr::Custom(ref c) => c.kind,
+impl fmt::Debug for Repr {
+ match *self {
+ Repr::Os(ref code) =>
+ fmt.debug_struct("Os").field("code", code)
+ .field("message", &sys::os::error_string(*code)).finish(),
+ Repr::Custom(ref c) => fmt.debug_tuple("Custom").field(c).finish(),
+impl fmt::Display for Error {
+ Repr::Os(code) => {
+ let detail = sys::os::error_string(code);
+ write!(fmt, "{} (os error {})", detail, code)
+ Repr::Custom(ref c) => c.error.fmt(fmt),
+impl error::Error for Error {
+ Repr::Os(..) => match self.kind() {
+ ErrorKind::NotFound => "entity not found",
+ ErrorKind::PermissionDenied => "permission denied",
+ ErrorKind::ConnectionRefused => "connection refused",
+ ErrorKind::ConnectionReset => "connection reset",
+ ErrorKind::ConnectionAborted => "connection aborted",
+ ErrorKind::NotConnected => "not connected",
+ ErrorKind::AddrInUse => "address in use",
+ ErrorKind::AddrNotAvailable => "address not available",
+ ErrorKind::BrokenPipe => "broken pipe",
+ ErrorKind::AlreadyExists => "entity already exists",
+ ErrorKind::WouldBlock => "operation would block",
+ ErrorKind::InvalidInput => "invalid input parameter",
+ ErrorKind::InvalidData => "invalid data",
+ ErrorKind::TimedOut => "timed out",
+ ErrorKind::WriteZero => "write zero",
+ ErrorKind::Interrupted => "operation interrupted",
+ ErrorKind::Other => "other os error",
+ ErrorKind::UnexpectedEof => "unexpected end of file",
+ ErrorKind::__Nonexhaustive => unreachable!()
+ },
+ Repr::Custom(ref c) => c.error.description(),
+ fn cause(&self) -> Option<&error::Error> {
+ Repr::Custom(ref c) => c.error.cause(),
+fn _assert_error_is_sync_send() {
+ fn _is_sync_send<T: Sync+Send>() {}
+ _is_sync_send::<Error>();
+mod test {
+ use super::{Error, ErrorKind};
+ use error;
+ use error::Error as error_Error;
+ use fmt;
+ use sys::os::error_string;
+ fn test_debug_error() {
+ let code = 6;
+ let msg = error_string(code);
+ let err = Error { repr: super::Repr::Os(code) };
+ let expected = format!("Error {{ repr: Os {{ code: {:?}, message: {:?} }} }}", code, msg);
+ assert_eq!(format!("{:?}", err), expected);
+ fn test_downcasting() {
+ #[derive(Debug)]
+ struct TestError;
+ impl fmt::Display for TestError {
+ fn fmt(&self, _: &mut fmt::Formatter) -> fmt::Result {
+ Ok(())
+ impl error::Error for TestError {
+ "asdf"
+ // we have to call all of these UFCS style right now since method
+ // resolution won't implicitly drop the Send+Sync bounds
+ let mut err = Error::new(ErrorKind::Other, TestError);
+ assert!(err.get_ref().unwrap().is::<TestError>());
+ assert_eq!("asdf", err.get_ref().unwrap().description());
+ assert!(err.get_mut().unwrap().is::<TestError>());
+ let extracted = err.into_inner().unwrap();
+ extracted.downcast::<TestError>().unwrap();
@@ -0,0 +1,289 @@
+use io::{self, SeekFrom, Read, Write, Seek, BufRead, Error, ErrorKind};
+use mem;
+use string::String;
+use vec::Vec;
+// =============================================================================
+// Forwarding implementations
+impl<'a, R: Read + ?Sized> Read for &'a mut R {
+ #[inline]
+ (**self).read(buf)
+ fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
+ (**self).read_to_end(buf)
+ fn read_to_string(&mut self, buf: &mut String) -> io::Result<usize> {
+ (**self).read_to_string(buf)
+ fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
+ (**self).read_exact(buf)
+impl<'a, W: Write + ?Sized> Write for &'a mut W {
+ fn write(&mut self, buf: &[u8]) -> io::Result<usize> { (**self).write(buf) }
+ fn flush(&mut self) -> io::Result<()> { (**self).flush() }
+ fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
+ (**self).write_all(buf)
+ fn write_fmt(&mut self, fmt: fmt::Arguments) -> io::Result<()> {
+ (**self).write_fmt(fmt)
+impl<'a, S: Seek + ?Sized> Seek for &'a mut S {
+ fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> { (**self).seek(pos) }
+impl<'a, B: BufRead + ?Sized> BufRead for &'a mut B {
+ fn fill_buf(&mut self) -> io::Result<&[u8]> { (**self).fill_buf() }
+ fn consume(&mut self, amt: usize) { (**self).consume(amt) }
+ fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
+ (**self).read_until(byte, buf)
+ fn read_line(&mut self, buf: &mut String) -> io::Result<usize> {
+ (**self).read_line(buf)
+impl<R: Read + ?Sized> Read for Box<R> {
+impl<W: Write + ?Sized> Write for Box<W> {
+impl<S: Seek + ?Sized> Seek for Box<S> {
+impl<B: BufRead + ?Sized> BufRead for Box<B> {
+// In-memory buffer implementations
+impl<'a> Read for &'a [u8] {
+ let amt = cmp::min(buf.len(), self.len());
+ let (a, b) = self.split_at(amt);
+ buf[..amt].copy_from_slice(a);
+ *self = b;
+ if buf.len() > self.len() {
+ return Err(Error::new(ErrorKind::UnexpectedEof,
+ "failed to fill whole buffer"));
+ let (a, b) = self.split_at(buf.len());
+ buf.copy_from_slice(a);
+impl<'a> BufRead for &'a [u8] {
+ fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(*self) }
+ fn consume(&mut self, amt: usize) { *self = &self[amt..]; }
+impl<'a> Write for &'a mut [u8] {
+ let amt = cmp::min(data.len(), self.len());
+ let (a, b) = mem::replace(self, &mut []).split_at_mut(amt);
+ a.copy_from_slice(&data[..amt]);
+ fn write_all(&mut self, data: &[u8]) -> io::Result<()> {
+ if self.write(data)? == data.len() {
+ Err(Error::new(ErrorKind::WriteZero, "failed to write whole buffer"))
+impl Write for Vec<u8> {
+ self.extend_from_slice(buf);
+ fn bench_read_slice(b: &mut test::Bencher) {
+ let buf = [5; 1024];
+ let mut dst = [0; 128];
+ let mut rd = &buf[..];
+ for _ in 0..8 {
+ let _ = rd.read(&mut dst);
+ test::black_box(&dst);
+ fn bench_write_slice(b: &mut test::Bencher) {
+ let mut buf = [0; 1024];
+ let src = [5; 128];
+ let mut wr = &mut buf[..];
+ let _ = wr.write_all(&src);
+ test::black_box(&wr);
+ fn bench_read_vec(b: &mut test::Bencher) {
+ let buf = vec![5; 1024];
+ fn bench_write_vec(b: &mut test::Bencher) {
+ let mut buf = Vec::with_capacity(1024);
@@ -0,0 +1,388 @@
+// Original implementation taken from rust-memchr
+// Copyright 2015 Andrew Gallant, bluss and Nicolas Koch
+/// A safe interface to `memchr`.
+/// Returns the index corresponding to the first occurrence of `needle` in
+/// `haystack`, or `None` if one is not found.
+/// memchr reduces to super-optimized machine code at around an order of
+/// magnitude faster than `haystack.iter().position(|&b| b == needle)`.
+/// (See benchmarks.)
+/// # Example
+/// This shows how to find the first position of a byte in a byte string.
+/// ```rust,ignore
+/// use memchr::memchr;
+/// let haystack = b"the quick brown fox";
+/// assert_eq!(memchr(b'k', haystack), Some(8));
+pub fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
+ // libc memchr
+ #[cfg(not(target_os = "windows"))]
+ fn memchr_specific(needle: u8, haystack: &[u8]) -> Option<usize> {
+ use libc;
+ let p = unsafe {
+ libc::memchr(
+ haystack.as_ptr() as *const libc::c_void,
+ needle as libc::c_int,
+ haystack.len() as libc::size_t)
+ if p.is_null() {
+ None
+ Some(p as usize - (haystack.as_ptr() as usize))
+ // use fallback on windows, since it's faster
+ #[cfg(target_os = "windows")]
+ fallback::memchr(needle, haystack)
+ memchr_specific(needle, haystack)
+/// A safe interface to `memrchr`.
+/// Returns the index corresponding to the last occurrence of `needle` in
+/// This shows how to find the last position of a byte in a byte string.
+/// use memchr::memrchr;
+/// assert_eq!(memrchr(b'o', haystack), Some(17));
+pub fn memrchr(needle: u8, haystack: &[u8]) -> Option<usize> {
+ #[cfg(target_os = "linux")]
+ fn memrchr_specific(needle: u8, haystack: &[u8]) -> Option<usize> {
+ // GNU's memrchr() will - unlike memchr() - error if haystack is empty.
+ if haystack.is_empty() {return None}
+ libc::memrchr(
+ #[cfg(not(target_os = "linux"))]
+ fallback::memrchr(needle, haystack)
+ memrchr_specific(needle, haystack)
+#[allow(dead_code)]
+mod fallback {
+ use cmp;
+ use mem;
+ const LO_U64: u64 = 0x0101010101010101;
+ const HI_U64: u64 = 0x8080808080808080;
+ // use truncation
+ const LO_USIZE: usize = LO_U64 as usize;
+ const HI_USIZE: usize = HI_U64 as usize;
+ /// Return `true` if `x` contains any zero byte.
+ /// From *Matters Computational*, J. Arndt
+ /// "The idea is to subtract one from each of the bytes and then look for
+ /// bytes where the borrow propagated all the way to the most significant
+ /// bit."
+ fn contains_zero_byte(x: usize) -> bool {
+ x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
+ #[cfg(target_pointer_width = "32")]
+ fn repeat_byte(b: u8) -> usize {
+ let mut rep = (b as usize) << 8 | b as usize;
+ rep = rep << 16 | rep;
+ rep
+ #[cfg(target_pointer_width = "64")]
+ rep = rep << 32 | rep;
+ /// Return the first index matching the byte `a` in `text`.
+ pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
+ // Scan for a single byte value by reading two `usize` words at a time.
+ //
+ // Split `text` in three parts
+ // - unaligned initial part, before the first word aligned address in text
+ // - body, scan by 2 words at a time
+ // - the last remaining part, < 2 word size
+ let len = text.len();
+ let ptr = text.as_ptr();
+ let usize_bytes = mem::size_of::<usize>();
+ // search up to an aligned boundary
+ let align = (ptr as usize) & (usize_bytes- 1);
+ let mut offset;
+ if align > 0 {
+ offset = cmp::min(usize_bytes - align, len);
+ if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
+ return Some(index);
+ offset = 0;
+ // search the body of the text
+ let repeated_x = repeat_byte(x);
+ if len >= 2 * usize_bytes {
+ while offset <= len - 2 * usize_bytes {
+ unsafe {
+ let u = *(ptr.offset(offset as isize) as *const usize);
+ let v = *(ptr.offset((offset + usize_bytes) as isize) as *const usize);
+ // break if there is a matching byte
+ let zu = contains_zero_byte(u ^ repeated_x);
+ let zv = contains_zero_byte(v ^ repeated_x);
+ if zu || zv {
+ offset += usize_bytes * 2;
+ // find the byte after the point the body loop stopped
+ text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
+ /// Return the last index matching the byte `a` in `text`.
+ pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
+ // - unaligned tail, after the last word aligned address in text
+ // - the first remaining bytes, < 2 word size
+ // search to an aligned boundary
+ let end_align = (ptr as usize + len) & (usize_bytes - 1);
+ if end_align > 0 {
+ offset = len - cmp::min(usize_bytes - end_align, len);
+ if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
+ return Some(offset + index);
+ offset = len;
+ while offset >= 2 * usize_bytes {
+ let u = *(ptr.offset(offset as isize - 2 * usize_bytes as isize) as *const usize);
+ let v = *(ptr.offset(offset as isize - usize_bytes as isize) as *const usize);
+ offset -= 2 * usize_bytes;
+ // find the byte before the point the body loop stopped
+ text[..offset].iter().rposition(|elt| *elt == x)
+ // test fallback implementations on all plattforms
+ fn matches_one() {
+ assert_eq!(Some(0), memchr(b'a', b"a"));
+ fn matches_begin() {
+ assert_eq!(Some(0), memchr(b'a', b"aaaa"));
+ fn matches_end() {
+ assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
+ fn matches_nul() {
+ assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
+ fn matches_past_nul() {
+ assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
+ fn no_match_empty() {
+ assert_eq!(None, memchr(b'a', b""));
+ fn no_match() {
+ assert_eq!(None, memchr(b'a', b"xyz"));
+ fn matches_one_reversed() {
+ assert_eq!(Some(0), memrchr(b'a', b"a"));
+ fn matches_begin_reversed() {
+ assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
+ fn matches_end_reversed() {
+ assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
+ fn matches_nul_reversed() {
+ assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
+ fn matches_past_nul_reversed() {
+ assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
+ fn no_match_empty_reversed() {
+ assert_eq!(None, memrchr(b'a', b""));
+ fn no_match_reversed() {
+ assert_eq!(None, memrchr(b'a', b"xyz"));
+ // test the implementations for the current plattform
+ use super::{memchr, memrchr};
@@ -0,0 +1,1855 @@
+//! Traits, helpers, and type definitions for core I/O functionality.
+//!
+//! The `std::io` module contains a number of common things you'll need
+//! when doing input and output. The most core part of this module is
+//! the [`Read`][read] and [`Write`][write] traits, which provide the
+//! most general interface for reading and writing input and output.
+//! [read]: trait.Read.html
+//! [write]: trait.Write.html
+//! # Read and Write
+//! Because they are traits, `Read` and `Write` are implemented by a number
+//! of other types, and you can implement them for your types too. As such,
+//! you'll see a few different types of I/O throughout the documentation in
+//! this module: `File`s, `TcpStream`s, and sometimes even `Vec<T>`s. For
+//! example, `Read` adds a `read()` method, which we can use on `File`s:
+//! ```
+//! use std::io;
+//! use std::io::prelude::*;
+//! use std::fs::File;
+//! # fn foo() -> io::Result<()> {
+//! let mut f = try!(File::open("foo.txt"));
+//! let mut buffer = [0; 10];
+//! // read up to 10 bytes
+//! try!(f.read(&mut buffer));
+//! println!("The bytes: {:?}", buffer);
+//! # Ok(())
+//! # }
+//! `Read` and `Write` are so important, implementors of the two traits have a
+//! nickname: readers and writers. So you'll sometimes see 'a reader' instead
+//! of 'a type that implements the `Read` trait'. Much easier!
+//! ## Seek and BufRead
+//! Beyond that, there are two important traits that are provided: [`Seek`][seek]
+//! and [`BufRead`][bufread]. Both of these build on top of a reader to control
+//! how the reading happens. `Seek` lets you control where the next byte is
+//! coming from:
+//! use std::io::SeekFrom;
+//! // skip to the last 10 bytes of the file
+//! try!(f.seek(SeekFrom::End(-10)));
+//! [seek]: trait.Seek.html
+//! [bufread]: trait.BufRead.html
+//! `BufRead` uses an internal buffer to provide a number of other ways to read, but
+//! to show it off, we'll need to talk about buffers in general. Keep reading!
+//! ## BufReader and BufWriter
+//! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be
+//! making near-constant calls to the operating system. To help with this,
+//! `std::io` comes with two structs, `BufReader` and `BufWriter`, which wrap
+//! readers and writers. The wrapper uses a buffer, reducing the number of
+//! calls and providing nicer methods for accessing exactly what you want.
+//! For example, `BufReader` works with the `BufRead` trait to add extra
+//! methods to any reader:
+//! use std::io::BufReader;
+//! let f = try!(File::open("foo.txt"));
+//! let mut reader = BufReader::new(f);
+//! let mut buffer = String::new();
+//! // read a line into buffer
+//! try!(reader.read_line(&mut buffer));
+//! println!("{}", buffer);
+//! `BufWriter` doesn't add any new ways of writing; it just buffers every call
+//! to [`write()`][write()]:
+//! use std::io::BufWriter;
+//! let f = try!(File::create("foo.txt"));
+//! {
+//! let mut writer = BufWriter::new(f);
+//! // write a byte to the buffer
+//! try!(writer.write(&[42]));
+//! } // the buffer is flushed once writer goes out of scope
+//! [write()]: trait.Write.html#tymethod.write
+//! ## Standard input and output
+//! A very common source of input is standard input:
+//! let mut input = String::new();
+//! try!(io::stdin().read_line(&mut input));
+//! println!("You typed: {}", input.trim());
+//! And a very common source of output is standard output:
+//! try!(io::stdout().write(&[42]));
+//! Of course, using `io::stdout()` directly is less common than something like
+//! `println!`.
+//! ## Iterator types
+//! A large number of the structures provided by `std::io` are for various
+//! ways of iterating over I/O. For example, `Lines` is used to split over
+//! lines:
+//! for line in reader.lines() {
+//! let line = try!(line);
+//! println!("{}", line);
+//! }
+//! ## Functions
+//! There are a number of [functions][functions] that offer access to various
+//! features. For example, we can use three of these functions to copy everything
+//! from standard input to standard output:
+//! try!(io::copy(&mut io::stdin(), &mut io::stdout()));
+//! [functions]: #functions
+//! ## io::Result
+//! Last, but certainly not least, is [`io::Result`][result]. This type is used
+//! as the return type of many `std::io` functions that can cause an error, and
+//! can be returned from your own functions as well. Many of the examples in this
+//! module use the [`try!`][try] macro:
+//! fn read_input() -> io::Result<()> {
+//! Ok(())
+//! The return type of `read_input()`, `io::Result<()>`, is a very common type
+//! for functions which don't have a 'real' return value, but do want to return
+//! errors if they happen. In this case, the only purpose of this function is
+//! to read the line and print it, so we use `()`.
+//! [result]: type.Result.html
+//! [try]: ../macro.try!.html
+//! ## Platform-specific behavior
+//! Many I/O functions throughout the standard library are documented to indicate
+//! what various library or syscalls they are delegated to. This is done to help
+//! applications both understand what's happening under the hood as well as investigate
+//! any possibly unclear semantics. Note, however, that this is informative, not a binding
+//! contract. The implementation of many of these functions are subject to change over
+//! time and may call fewer or more syscalls/library functions.
+#![stable(feature = "rust1", since = "1.0.0")]
+use rustc_unicode::str as core_str;
+use error as std_error;
+use iter::{Iterator};
+use marker::Sized;
+use ops::{Drop, FnOnce};
+use result::Result::{Ok, Err};
+use str;
+pub use self::buffered::{BufReader, BufWriter, LineWriter};
+pub use self::buffered::IntoInnerError;
+pub use self::cursor::Cursor;
+pub use self::error::{Result, Error, ErrorKind};
+pub use self::util::{copy, sink, Sink, empty, Empty, repeat, Repeat};
+pub use self::stdio::{stdin, stdout, stderr, _print, Stdin, Stdout, Stderr};
+pub use self::stdio::{StdoutLock, StderrLock, StdinLock};
+#[unstable(feature = "libstd_io_internals", issue = "0")]
+#[doc(no_inline, hidden)]
+pub use self::stdio::{set_panic, set_print};
+pub mod prelude;
+mod buffered;
+mod cursor;
+mod error;
+mod impls;
+mod lazy;
+mod util;
+mod stdio;
+const DEFAULT_BUF_SIZE: usize = 64 * 1024;
+// A few methods below (read_to_string, read_line) will append data into a
+// `String` buffer, but we need to be pretty careful when doing this. The
+// implementation will just call `.as_mut_vec()` and then delegate to a
+// byte-oriented reading method, but we must ensure that when returning we never
+// leave `buf` in a state such that it contains invalid UTF-8 in its bounds.
+// To this end, we use an RAII guard (to protect against panics) which updates
+// the length of the string when it is dropped. This guard initially truncates
+// the string to the prior length and only after we've validated that the
+// new contents are valid UTF-8 do we allow it to set a longer length.
+// The unsafety in this function is twofold:
+// 1. We're looking at the raw bytes of `buf`, so we take on the burden of UTF-8
+// checks.
+// 2. We're passing a raw buffer to the function `f`, and it is expected that
+// the function only *appends* bytes to the buffer. We'll get undefined
+// behavior if existing bytes are overwritten to have non-UTF-8 data.
+fn append_to_string<F>(buf: &mut String, f: F) -> Result<usize>
+ where F: FnOnce(&mut Vec<u8>) -> Result<usize>
+{
+ struct Guard<'a> { s: &'a mut Vec<u8>, len: usize }
+ impl<'a> Drop for Guard<'a> {
+ unsafe { self.s.set_len(self.len); }
+ let mut g = Guard { len: buf.len(), s: buf.as_mut_vec() };
+ let ret = f(g.s);
+ if str::from_utf8(&g.s[g.len..]).is_err() {
+ ret.and_then(|_| {
+ Err(Error::new(ErrorKind::InvalidData,
+ "stream did not contain valid UTF-8"))
+ g.len = g.s.len();
+// This uses an adaptive system to extend the vector when it fills. We want to
+// avoid paying to allocate and zero a huge chunk of memory if the reader only
+// has 4 bytes while still making large reads if the reader does have a ton
+// of data to return. Simply tacking on an extra DEFAULT_BUF_SIZE space every
+// time is 4,500 times (!) slower than this if the reader has a very small
+// amount of data to return.
+fn read_to_end<R: Read + ?Sized>(r: &mut R, buf: &mut Vec<u8>) -> Result<usize> {
+ let start_len = buf.len();
+ let mut len = start_len;
+ let mut new_write_size = 16;
+ let ret;
+ loop {
+ if len == buf.len() {
+ if new_write_size < DEFAULT_BUF_SIZE {
+ new_write_size *= 2;
+ buf.resize(len + new_write_size, 0);
+ match r.read(&mut buf[len..]) {
+ ret = Ok(len - start_len);
+ Ok(n) => len += n,
+ Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
+ Err(e) => {
+ ret = Err(e);
+ buf.truncate(len);
+/// The `Read` trait allows for reading bytes from a source.
+/// Implementors of the `Read` trait are sometimes called 'readers'.
+/// Readers are defined by one required method, `read()`. Each call to `read`
+/// will attempt to pull bytes from this source into a provided buffer. A
+/// number of other methods are implemented in terms of `read()`, giving
+/// implementors a number of ways to read bytes while only needing to implement
+/// a single method.
+/// Readers are intended to be composable with one another. Many implementors
+/// throughout `std::io` take and provide types which implement the `Read`
+/// trait.
+/// Please note that each call to `read` may involve a system call, and
+/// therefore, using something that implements [`BufRead`][bufread], such as
+/// [`BufReader`][bufreader], will be more efficient.
+/// [bufread]: trait.BufRead.html
+/// [bufreader]: struct.BufReader.html
+/// [`File`][file]s implement `Read`:
+/// let mut f = try!(File::open("foo.txt"));
+/// let mut buffer = [0; 10];
+/// // read up to 10 bytes
+/// try!(f.read(&mut buffer));
+/// let mut buffer = vec![0; 10];
+/// // read the whole file
+/// try!(f.read_to_end(&mut buffer));
+/// // read into a String, so that you don't need to do the conversion.
+/// try!(f.read_to_string(&mut buffer));
+/// // and more! See the other methods for more details.
+pub trait Read {
+ /// Pull some bytes from this source into the specified buffer, returning
+ /// how many bytes were read.
+ /// This function does not provide any guarantees about whether it blocks
+ /// waiting for data, but if an object needs to block for a read but cannot
+ /// it will typically signal this via an `Err` return value.
+ /// If the return value of this method is `Ok(n)`, then it must be
+ /// guaranteed that `0 <= n <= buf.len()`. A nonzero `n` value indicates
+ /// that the buffer `buf` has been filled in with `n` bytes of data from this
+ /// source. If `n` is `0`, then it can indicate one of two scenarios:
+ /// 1. This reader has reached its "end of file" and will likely no longer
+ /// be able to produce bytes. Note that this does not mean that the
+ /// reader will *always* no longer be able to produce bytes.
+ /// 2. The buffer specified was 0 bytes in length.
+ /// No guarantees are provided about the contents of `buf` when this
+ /// function is called, implementations cannot rely on any property of the
+ /// contents of `buf` being true. It is recommended that implementations
+ /// only write data to `buf` instead of reading its contents.
+ /// # Errors
+ /// If this function encounters any form of I/O or other error, an error
+ /// variant will be returned. If an error is returned then it must be
+ /// guaranteed that no bytes were read.
+ /// [`File`][file]s implement `Read`:
+ /// [file]: ../fs/struct.File.html
+ /// use std::io;
+ /// # fn foo() -> io::Result<()> {
+ /// let mut f = try!(File::open("foo.txt"));
+ /// let mut buffer = [0; 10];
+ /// // read 10 bytes
+ /// try!(f.read(&mut buffer[..]));
+ fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
+ /// Read all bytes until EOF in this source, placing them into `buf`.
+ /// All bytes read from this source will be appended to the specified buffer
+ /// `buf`. This function will continuously call `read` to append more data to
+ /// `buf` until `read` returns either `Ok(0)` or an error of
+ /// non-`ErrorKind::Interrupted` kind.
+ /// If successful, this function will return the total number of bytes read.
+ /// If this function encounters an error of the kind
+ /// `ErrorKind::Interrupted` then the error is ignored and the operation
+ /// will continue.
+ /// If any other read error is encountered then this function immediately
+ /// returns. Any bytes which have already been read will be appended to
+ /// `buf`.
+ /// let mut buffer = Vec::new();
+ /// // read the whole file
+ /// try!(f.read_to_end(&mut buffer));
+ fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
+ read_to_end(self, buf)
+ /// If successful, this function returns the number of bytes which were read
+ /// and appended to `buf`.
+ /// If the data in this stream is *not* valid UTF-8 then an error is
+ /// returned and `buf` is unchanged.
+ /// See [`read_to_end()`][readtoend] for other error semantics.
+ /// [readtoend]: #method.read_to_end
+ /// let mut buffer = String::new();
+ /// try!(f.read_to_string(&mut buffer));
+ fn read_to_string(&mut self, buf: &mut String) -> Result<usize> {
+ // Note that we do *not* call `.read_to_end()` here. We are passing
+ // `&mut Vec<u8>` (the raw contents of `buf`) into the `read_to_end`
+ // method to fill it up. An arbitrary implementation could overwrite the
+ // entire contents of the vector, not just append to it (which is what
+ // we are expecting).
+ // To prevent extraneously checking the UTF-8-ness of the entire buffer
+ // we pass it to our hardcoded `read_to_end` implementation which we
+ // know is guaranteed to only read data into the end of the buffer.
+ append_to_string(buf, |b| read_to_end(self, b))
+ /// Read the exact number of bytes required to fill `buf`.
+ /// This function reads as many bytes as necessary to completely fill the
+ /// specified buffer `buf`.
+ /// If this function encounters an "end of file" before completely filling
+ /// the buffer, it returns an error of the kind `ErrorKind::UnexpectedEof`.
+ /// The contents of `buf` are unspecified in this case.
+ /// returns. The contents of `buf` are unspecified in this case.
+ /// If this function returns an error, it is unspecified how many bytes it
+ /// has read, but it will never read more than would be necessary to
+ /// completely fill the buffer.
+ /// // read exactly 10 bytes
+ /// try!(f.read_exact(&mut buffer));
+ fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> {
+ while !buf.is_empty() {
+ match self.read(buf) {
+ Ok(0) => break,
+ Ok(n) => { let tmp = buf; buf = &mut tmp[n..]; }
+ Err(e) => return Err(e),
+ if !buf.is_empty() {
+ Err(Error::new(ErrorKind::UnexpectedEof,
+ "failed to fill whole buffer"))
+ /// Creates a "by reference" adaptor for this instance of `Read`.
+ /// The returned adaptor also implements `Read` and will simply borrow this
+ /// current reader.
+ /// use std::io::Read;
+ /// let mut other_buffer = Vec::new();
+ /// {
+ /// let reference = f.by_ref();
+ /// // read at most 5 bytes
+ /// try!(reference.take(5).read_to_end(&mut buffer));
+ /// } // drop our &mut reference so we can use f again
+ /// // original file still usable, read the rest
+ /// try!(f.read_to_end(&mut other_buffer));
+ fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
+ /// Transforms this `Read` instance to an `Iterator` over its bytes.
+ /// The returned type implements `Iterator` where the `Item` is `Result<u8,
+ /// R::Err>`. The yielded item is `Ok` if a byte was successfully read and
+ /// `Err` otherwise for I/O errors. EOF is mapped to returning `None` from
+ /// this iterator.
+ /// for byte in f.bytes() {
+ /// println!("{}", byte.unwrap());
+ fn bytes(self) -> Bytes<Self> where Self: Sized {
+ Bytes { inner: self }
+ /// Transforms this `Read` instance to an `Iterator` over `char`s.
+ /// This adaptor will attempt to interpret this reader as a UTF-8 encoded
+ /// sequence of characters. The returned iterator will return `None` once
+ /// EOF is reached for this reader. Otherwise each element yielded will be a
+ /// `Result<char, E>` where `E` may contain information about what I/O error
+ /// occurred or where decoding failed.
+ /// Currently this adaptor will discard intermediate data read, and should
+ /// be avoided if this is not desired.
+ /// #![feature(io)]
+ /// for c in f.chars() {
+ /// println!("{}", c.unwrap());
+ #[unstable(feature = "io", reason = "the semantics of a partial read/write \
+ of where errors happen is currently \
+ unclear and may change",
+ issue = "27802")]
+ fn chars(self) -> Chars<Self> where Self: Sized {
+ Chars { inner: self }
+ /// Creates an adaptor which will chain this stream with another.
+ /// The returned `Read` instance will first read all bytes from this object
+ /// until EOF is encountered. Afterwards the output is equivalent to the
+ /// output of `next`.
+ /// let mut f1 = try!(File::open("foo.txt"));
+ /// let mut f2 = try!(File::open("bar.txt"));
+ /// let mut handle = f1.chain(f2);
+ /// // read the value into a String. We could use any Read method here,
+ /// // this is just one example.
+ /// try!(handle.read_to_string(&mut buffer));
+ fn chain<R: Read>(self, next: R) -> Chain<Self, R> where Self: Sized {
+ Chain { first: self, second: next, done_first: false }
+ /// Creates an adaptor which will read at most `limit` bytes from it.
+ /// This function returns a new instance of `Read` which will read at most
+ /// `limit` bytes, after which it will always return EOF (`Ok(0)`). Any
+ /// read errors will not count towards the number of bytes read and future
+ /// calls to `read` may succeed.
+ /// let mut buffer = [0; 5];
+ /// // read at most five bytes
+ /// let mut handle = f.take(5);
+ /// try!(handle.read(&mut buffer));
+ fn take(self, limit: u64) -> Take<Self> where Self: Sized {
+ Take { inner: self, limit: limit }
+/// A trait for objects which are byte-oriented sinks.
+/// Implementors of the `Write` trait are sometimes called 'writers'.
+/// Writers are defined by two required methods, `write()` and `flush()`:
+/// * The `write()` method will attempt to write some data into the object,
+/// returning how many bytes were successfully written.
+/// * The `flush()` method is useful for adaptors and explicit buffers
+/// themselves for ensuring that all buffered data has been pushed out to the
+/// 'true sink'.
+/// Writers are intended to be composable with one another. Many implementors
+/// throughout `std::io` take and provide types which implement the `Write`
+/// let mut buffer = try!(File::create("foo.txt"));
+/// try!(buffer.write(b"some bytes"));
+pub trait Write {
+ /// Write a buffer into this object, returning how many bytes were written.
+ /// This function will attempt to write the entire contents of `buf`, but
+ /// the entire write may not succeed, or the write may also generate an
+ /// error. A call to `write` represents *at most one* attempt to write to
+ /// any wrapped object.
+ /// Calls to `write` are not guaranteed to block waiting for data to be
+ /// written, and a write which would otherwise block can be indicated through
+ /// an `Err` variant.
+ /// If the return value is `Ok(n)` then it must be guaranteed that
+ /// `0 <= n <= buf.len()`. A return value of `0` typically means that the
+ /// underlying object is no longer able to accept bytes and will likely not
+ /// be able to in the future as well, or that the buffer provided is empty.
+ /// Each call to `write` may generate an I/O error indicating that the
+ /// operation could not be completed. If an error is returned then no bytes
+ /// in the buffer were written to this writer.
+ /// It is **not** considered an error if the entire buffer could not be
+ /// written to this writer.
+ /// let mut buffer = try!(File::create("foo.txt"));
+ /// try!(buffer.write(b"some bytes"));
+ fn write(&mut self, buf: &[u8]) -> Result<usize>;
+ /// Flush this output stream, ensuring that all intermediately buffered
+ /// contents reach their destination.
+ /// It is considered an error if not all bytes could be written due to
+ /// I/O errors or EOF being reached.
+ /// let mut buffer = BufWriter::new(try!(File::create("foo.txt")));
+ /// try!(buffer.flush());
+ fn flush(&mut self) -> Result<()>;
+ /// Attempts to write an entire buffer into this write.
+ /// This method will continuously call `write` while there is more data to
+ /// write. This method will not return until the entire buffer has been
+ /// successfully written or an error occurs. The first error generated from
+ /// this method will be returned.
+ /// This function will return the first error that `write` returns.
+ /// try!(buffer.write_all(b"some bytes"));
+ fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
+ match self.write(buf) {
+ Ok(0) => return Err(Error::new(ErrorKind::WriteZero,
+ "failed to write whole buffer")),
+ Ok(n) => buf = &buf[n..],
+ /// Writes a formatted string into this writer, returning any error
+ /// encountered.
+ /// This method is primarily used to interface with the
+ /// [`format_args!`][formatargs] macro, but it is rare that this should
+ /// explicitly be called. The [`write!`][write] macro should be favored to
+ /// invoke this method instead.
+ /// [formatargs]: ../macro.format_args!.html
+ /// [write]: ../macro.write!.html
+ /// This function internally uses the [`write_all`][writeall] method on
+ /// this trait and hence will continuously write data so long as no errors
+ /// are received. This also means that partial writes are not indicated in
+ /// this signature.
+ /// [writeall]: #method.write_all
+ /// This function will return any I/O error reported while formatting.
+ /// // this call
+ /// try!(write!(buffer, "{:.*}", 2, 1.234567));
+ /// // turns into this:
+ /// try!(buffer.write_fmt(format_args!("{:.*}", 2, 1.234567)));
+ fn write_fmt(&mut self, fmt: fmt::Arguments) -> Result<()> {
+ // Create a shim which translates a Write to a fmt::Write and saves
+ // off I/O errors. instead of discarding them
+ struct Adaptor<'a, T: ?Sized + 'a> {
+ inner: &'a mut T,
+ error: Result<()>,
+ impl<'a, T: Write + ?Sized> fmt::Write for Adaptor<'a, T> {
+ fn write_str(&mut self, s: &str) -> fmt::Result {
+ match self.inner.write_all(s.as_bytes()) {
+ Ok(()) => Ok(()),
+ self.error = Err(e);
+ Err(fmt::Error)
+ let mut output = Adaptor { inner: self, error: Ok(()) };
+ match fmt::write(&mut output, fmt) {
+ Err(..) => {
+ // check if the error came from the underlying `Write` or not
+ if output.error.is_err() {
+ output.error
+ Err(Error::new(ErrorKind::Other, "formatter error"))
+ /// Creates a "by reference" adaptor for this instance of `Write`.
+ /// The returned adaptor also implements `Write` and will simply borrow this
+ /// current writer.
+ /// use std::io::Write;
+ /// let reference = buffer.by_ref();
+ /// // we can use reference just like our original buffer
+ /// try!(reference.write_all(b"some bytes"));
+/// The `Seek` trait provides a cursor which can be moved within a stream of
+/// bytes.
+/// The stream typically has a fixed size, allowing seeking relative to either
+/// end or the current offset.
+/// [`File`][file]s implement `Seek`:
+/// use std::io::SeekFrom;
+/// // move the cursor 42 bytes from the start of the file
+/// try!(f.seek(SeekFrom::Start(42)));
+pub trait Seek {
+ /// Seek to an offset, in bytes, in a stream.
+ /// A seek beyond the end of a stream is allowed, but implementation
+ /// defined.
+ /// If the seek operation completed successfully,
+ /// this method returns the new position from the start of the stream.
+ /// That position can be used later with `SeekFrom::Start`.
+ /// Seeking to a negative offset is considered an error.
+ fn seek(&mut self, pos: SeekFrom) -> Result<u64>;
+/// Enumeration of possible methods to seek within an I/O object.
+pub enum SeekFrom {
+ /// Set the offset to the provided number of bytes.
+ Start(#[stable(feature = "rust1", since = "1.0.0")] u64),
+ /// Set the offset to the size of this object plus the specified number of
+ /// bytes.
+ /// It is possible to seek beyond the end of an object, but it's an error to
+ /// seek before byte 0.
+ End(#[stable(feature = "rust1", since = "1.0.0")] i64),
+ /// Set the offset to the current position plus the specified number of
+ Current(#[stable(feature = "rust1", since = "1.0.0")] i64),
+fn read_until<R: BufRead + ?Sized>(r: &mut R, delim: u8, buf: &mut Vec<u8>)
+ -> Result<usize> {
+ let mut read = 0;
+ let (done, used) = {
+ let available = match r.fill_buf() {
+ Ok(n) => n,
+ Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
+ Err(e) => return Err(e)
+ match memchr::memchr(delim, available) {
+ buf.extend_from_slice(&available[..i + 1]);
+ (true, i + 1)
+ None => {
+ buf.extend_from_slice(available);
+ (false, available.len())
+ r.consume(used);
+ read += used;
+ if done || used == 0 {
+ return Ok(read);
+/// A `BufRead` is a type of `Read`er which has an internal buffer, allowing it
+/// to perform extra ways of reading.
+/// For example, reading line-by-line is inefficient without using a buffer, so
+/// if you want to read by line, you'll need `BufRead`, which includes a
+/// [`read_line()`][readline] method as well as a [`lines()`][lines] iterator.
+/// [readline]: #method.read_line
+/// [lines]: #method.lines
+/// A locked standard input implements `BufRead`:
+/// let stdin = io::stdin();
+/// for line in stdin.lock().lines() {
+/// println!("{}", line.unwrap());
+/// If you have something that implements `Read`, you can use the [`BufReader`
+/// type][bufreader] to turn it into a `BufRead`.
+/// For example, [`File`][file] implements `Read`, but not `BufRead`.
+/// `BufReader` to the rescue!
+/// use std::io::{self, BufReader};
+/// let f = try!(File::open("foo.txt"));
+/// let f = BufReader::new(f);
+/// for line in f.lines() {
+pub trait BufRead: Read {
+ /// Fills the internal buffer of this object, returning the buffer contents.
+ /// This function is a lower-level call. It needs to be paired with the
+ /// [`consume`][consume] method to function properly. When calling this
+ /// method, none of the contents will be "read" in the sense that later
+ /// calling `read` may return the same contents. As such, `consume` must be
+ /// called with the number of bytes that are consumed from this buffer to
+ /// ensure that the bytes are never returned twice.
+ /// [consume]: #tymethod.consume
+ /// An empty buffer returned indicates that the stream has reached EOF.
+ /// This function will return an I/O error if the underlying reader was
+ /// read, but returned an error.
+ /// A locked standard input implements `BufRead`:
+ /// let stdin = io::stdin();
+ /// let mut stdin = stdin.lock();
+ /// // we can't have two `&mut` references to `stdin`, so use a block
+ /// // to end the borrow early.
+ /// let length = {
+ /// let buffer = stdin.fill_buf().unwrap();
+ /// // work with buffer
+ /// println!("{:?}", buffer);
+ /// buffer.len()
+ /// // ensure the bytes we worked with aren't returned again later
+ /// stdin.consume(length);
+ fn fill_buf(&mut self) -> Result<&[u8]>;
+ /// Tells this buffer that `amt` bytes have been consumed from the buffer,
+ /// so they should no longer be returned in calls to `read`.
+ /// [`fill_buf`][fillbuf] method to function properly. This function does
+ /// not perform any I/O, it simply informs this object that some amount of
+ /// its buffer, returned from `fill_buf`, has been consumed and should no
+ /// longer be returned. As such, this function may do odd things if
+ /// `fill_buf` isn't called before calling it.
+ /// [fillbuf]: #tymethod.fill_buff
+ /// The `amt` must be `<=` the number of bytes in the buffer returned by
+ /// `fill_buf`.
+ /// Since `consume()` is meant to be used with [`fill_buf()`][fillbuf],
+ /// that method's example includes an example of `consume()`.
+ fn consume(&mut self, amt: usize);
+ /// Read all bytes into `buf` until the delimiter `byte` is reached.
+ /// This function will read bytes from the underlying stream until the
+ /// delimiter or EOF is found. Once found, all bytes up to, and including,
+ /// the delimiter (if found) will be appended to `buf`.
+ /// If this reader is currently at EOF then this function will not modify
+ /// `buf` and will return `Ok(n)` where `n` is the number of bytes which
+ /// were read.
+ /// This function will ignore all instances of `ErrorKind::Interrupted` and
+ /// will otherwise return any errors returned by `fill_buf`.
+ /// If an I/O error is encountered then all bytes read so far will be
+ /// present in `buf` and its length will have been adjusted appropriately.
+ /// A locked standard input implements `BufRead`. In this example, we'll
+ /// read from standard input until we see an `a` byte.
+ /// fn foo() -> io::Result<()> {
+ /// try!(stdin.read_until(b'a', &mut buffer));
+ fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize> {
+ read_until(self, byte, buf)
+ /// Read all bytes until a newline (the 0xA byte) is reached, and append
+ /// them to the provided buffer.
+ /// newline delimiter (the 0xA byte) or EOF is found. Once found, all bytes
+ /// up to, and including, the delimiter (if found) will be appended to
+ /// This function has the same error semantics as `read_until` and will also
+ /// return an error if the read bytes are not valid UTF-8. If an I/O error
+ /// is encountered then `buf` may contain some bytes already read in the
+ /// event that all data read so far was valid UTF-8.
+ /// read all of the lines from standard input. If we were to do this in
+ /// an actual project, the [`lines()`][lines] method would be easier, of
+ /// course.
+ /// [lines]: #method.lines
+ /// while stdin.read_line(&mut buffer).unwrap() > 0 {
+ /// buffer.clear();
+ fn read_line(&mut self, buf: &mut String) -> Result<usize> {
+ // Note that we are not calling the `.read_until` method here, but
+ // rather our hardcoded implementation. For more details as to why, see
+ // the comments in `read_to_end`.
+ append_to_string(buf, |b| read_until(self, b'\n', b))
+ /// Returns an iterator over the contents of this reader split on the byte
+ /// `byte`.
+ /// The iterator returned from this function will return instances of
+ /// `io::Result<Vec<u8>>`. Each vector returned will *not* have the
+ /// delimiter byte at the end.
+ /// This function will yield errors whenever `read_until` would have also
+ /// yielded an error.
+ /// read some input from standard input, splitting on commas.
+ /// for content in stdin.lock().split(b',') {
+ /// println!("{:?}", content.unwrap());
+ fn split(self, byte: u8) -> Split<Self> where Self: Sized {
+ Split { buf: self, delim: byte }
+ /// Returns an iterator over the lines of this reader.
+ /// The iterator returned from this function will yield instances of
+ /// `io::Result<String>`. Each string returned will *not* have a newline
+ /// byte (the 0xA byte) or CRLF (0xD, 0xA bytes) at the end.
+ /// for line in stdin.lock().lines() {
+ /// println!("{}", line.unwrap());
+ fn lines(self) -> Lines<Self> where Self: Sized {
+ Lines { buf: self }
+/// Adaptor to chain together two readers.
+/// This struct is generally created by calling [`chain()`][chain] on a reader.
+/// Please see the documentation of `chain()` for more details.
+/// [chain]: trait.Read.html#method.chain
+pub struct Chain<T, U> {
+ first: T,
+ second: U,
+ done_first: bool,
+impl<T: Read, U: Read> Read for Chain<T, U> {
+ fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
+ if !self.done_first {
+ match self.first.read(buf)? {
+ 0 => { self.done_first = true; }
+ n => return Ok(n),
+ self.second.read(buf)
+/// Reader adaptor which limits the bytes read from an underlying reader.
+/// This struct is generally created by calling [`take()`][take] on a reader.
+/// Please see the documentation of `take()` for more details.
+/// [take]: trait.Read.html#method.take
+pub struct Take<T> {
+ limit: u64,
+impl<T> Take<T> {
+ /// Returns the number of bytes that can be read before this instance will
+ /// return EOF.
+ /// # Note
+ /// This instance may reach EOF after reading fewer bytes than indicated by
+ /// this method if the underlying `Read` instance reaches EOF.
+ pub fn limit(&self) -> u64 { self.limit }
+impl<T: Read> Read for Take<T> {
+ // Don't call into inner reader at all at EOF because it may still block
+ if self.limit == 0 {
+ return Ok(0);
+ let max = cmp::min(buf.len() as u64, self.limit) as usize;
+ let n = self.inner.read(&mut buf[..max])?;
+ self.limit -= n as u64;
+impl<T: BufRead> BufRead for Take<T> {
+ fn fill_buf(&mut self) -> Result<&[u8]> {
+ let buf = self.inner.fill_buf()?;
+ let cap = cmp::min(buf.len() as u64, self.limit) as usize;
+ Ok(&buf[..cap])
+ // Don't let callers reset the limit by passing an overlarge value
+ let amt = cmp::min(amt as u64, self.limit) as usize;
+ self.limit -= amt as u64;
+ self.inner.consume(amt);
+/// An iterator over `u8` values of a reader.
+/// This struct is generally created by calling [`bytes()`][bytes] on a reader.
+/// Please see the documentation of `bytes()` for more details.
+/// [bytes]: trait.Read.html#method.bytes
+pub struct Bytes<R> {
+impl<R: Read> Iterator for Bytes<R> {
+ type Item = Result<u8>;
+ fn next(&mut self) -> Option<Result<u8>> {
+ match self.inner.read(&mut buf) {
+ Ok(0) => None,
+ Ok(..) => Some(Ok(buf[0])),
+ Err(e) => Some(Err(e)),
+/// An iterator over the `char`s of a reader.
+/// This struct is generally created by calling [`chars()`][chars] on a reader.
+/// Please see the documentation of `chars()` for more details.
+/// [chars]: trait.Read.html#method.chars
+#[unstable(feature = "io", reason = "awaiting stability of Read::chars",
+pub struct Chars<R> {
+/// An enumeration of possible errors that can be generated from the `Chars`
+/// adapter.
+pub enum CharsError {
+ /// Variant representing that the underlying stream was read successfully
+ /// but it did not contain valid utf8 data.
+ NotUtf8,
+ /// Variant representing that an I/O error occurred.
+ Other(Error),
+impl<R: Read> Iterator for Chars<R> {
+ type Item = result::Result<char, CharsError>;
+ fn next(&mut self) -> Option<result::Result<char, CharsError>> {
+ let first_byte = match self.inner.read(&mut buf) {
+ Ok(0) => return None,
+ Ok(..) => buf[0],
+ Err(e) => return Some(Err(CharsError::Other(e))),
+ let width = core_str::utf8_char_width(first_byte);
+ if width == 1 { return Some(Ok(first_byte as char)) }
+ if width == 0 { return Some(Err(CharsError::NotUtf8)) }
+ let mut buf = [first_byte, 0, 0, 0];
+ let mut start = 1;
+ while start < width {
+ match self.inner.read(&mut buf[start..width]) {
+ Ok(0) => return Some(Err(CharsError::NotUtf8)),
+ Ok(n) => start += n,
+ Some(match str::from_utf8(&buf[..width]).ok() {
+ Some(s) => Ok(s.char_at(0)),
+ None => Err(CharsError::NotUtf8),
+impl std_error::Error for CharsError {
+ CharsError::NotUtf8 => "invalid utf8 encoding",
+ CharsError::Other(ref e) => std_error::Error::description(e),
+ fn cause(&self) -> Option<&std_error::Error> {
+ CharsError::NotUtf8 => None,
+ CharsError::Other(ref e) => e.cause(),
+impl fmt::Display for CharsError {
+ CharsError::NotUtf8 => {
+ "byte stream did not contain valid utf8".fmt(f)
+ CharsError::Other(ref e) => e.fmt(f),
+/// An iterator over the contents of an instance of `BufRead` split on a
+/// particular byte.
+/// This struct is generally created by calling [`split()`][split] on a
+/// `BufRead`. Please see the documentation of `split()` for more details.
+/// [split]: trait.BufRead.html#method.split
+pub struct Split<B> {
+ buf: B,
+ delim: u8,
+impl<B: BufRead> Iterator for Split<B> {
+ type Item = Result<Vec<u8>>;
+ fn next(&mut self) -> Option<Result<Vec<u8>>> {
+ match self.buf.read_until(self.delim, &mut buf) {
+ Ok(_n) => {
+ if buf[buf.len() - 1] == self.delim {
+ buf.pop();
+ Some(Ok(buf))
+ Err(e) => Some(Err(e))
+/// An iterator over the lines of an instance of `BufRead`.
+/// This struct is generally created by calling [`lines()`][lines] on a
+/// `BufRead`. Please see the documentation of `lines()` for more details.
+/// [lines]: trait.BufRead.html#method.lines
+pub struct Lines<B> {
+impl<B: BufRead> Iterator for Lines<B> {
+ type Item = Result<String>;
+ fn next(&mut self) -> Option<Result<String>> {
+ let mut buf = String::new();
+ match self.buf.read_line(&mut buf) {
+ if buf.ends_with("\n") {
+ if buf.ends_with("\r") {
+ use io;
+ use super::Cursor;
+ use super::repeat;
+ fn read_until() {
+ let mut buf = Cursor::new(&b"12"[..]);
+ assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 2);
+ assert_eq!(v, b"12");
+ let mut buf = Cursor::new(&b"1233"[..]);
+ assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 3);
+ assert_eq!(v, b"123");
+ assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 1);
+ assert_eq!(v, b"3");
+ assert_eq!(buf.read_until(b'3', &mut v).unwrap(), 0);
+ fn split() {
+ let buf = Cursor::new(&b"12"[..]);
+ let mut s = buf.split(b'3');
+ assert_eq!(s.next().unwrap().unwrap(), vec![b'1', b'2']);
+ assert!(s.next().is_none());
+ let buf = Cursor::new(&b"1233"[..]);
+ assert_eq!(s.next().unwrap().unwrap(), vec![]);
+ fn read_line() {
+ let mut v = String::new();
+ assert_eq!(buf.read_line(&mut v).unwrap(), 2);
+ assert_eq!(v, "12");
+ let mut buf = Cursor::new(&b"12\n\n"[..]);
+ assert_eq!(buf.read_line(&mut v).unwrap(), 3);
+ assert_eq!(v, "12\n");
+ assert_eq!(buf.read_line(&mut v).unwrap(), 1);
+ assert_eq!(v, "\n");
+ assert_eq!(buf.read_line(&mut v).unwrap(), 0);
+ assert_eq!(v, "");
+ fn lines() {
+ let buf = Cursor::new(&b"12\r"[..]);
+ let mut s = buf.lines();
+ assert_eq!(s.next().unwrap().unwrap(), "12\r".to_string());
+ let buf = Cursor::new(&b"12\r\n\n"[..]);
+ assert_eq!(s.next().unwrap().unwrap(), "12".to_string());
+ assert_eq!(s.next().unwrap().unwrap(), "".to_string());
+ let mut c = Cursor::new(&b""[..]);
+ assert_eq!(c.read_to_end(&mut v).unwrap(), 0);
+ let mut c = Cursor::new(&b"1"[..]);
+ assert_eq!(c.read_to_end(&mut v).unwrap(), 1);
+ assert_eq!(v, b"1");
+ let cap = 1024 * 1024;
+ let data = (0..cap).map(|i| (i / 3) as u8).collect::<Vec<_>>();
+ let (a, b) = data.split_at(data.len() / 2);
+ assert_eq!(Cursor::new(a).read_to_end(&mut v).unwrap(), a.len());
+ assert_eq!(Cursor::new(b).read_to_end(&mut v).unwrap(), b.len());
+ assert_eq!(v, data);
+ fn read_to_string() {
+ assert_eq!(c.read_to_string(&mut v).unwrap(), 0);
+ assert_eq!(c.read_to_string(&mut v).unwrap(), 1);
+ assert_eq!(v, "1");
+ let mut c = Cursor::new(&b"\xff"[..]);
+ assert!(c.read_to_string(&mut v).is_err());
+ fn read_exact() {
+ assert_eq!(c.read_exact(&mut buf).unwrap_err().kind(),
+ io::ErrorKind::UnexpectedEof);
+ let mut c = Cursor::new(&b"123"[..]).chain(Cursor::new(&b"456789"[..]));
+ c.read_exact(&mut buf).unwrap();
+ assert_eq!(&buf, b"1234");
+ assert_eq!(&buf, b"5678");
+ fn read_exact_slice() {
+ let mut c = &b""[..];
+ let mut c = &b"123"[..];
+ // make sure the optimized (early returning) method is being used
+ assert_eq!(&buf, &[0; 4]);
+ let mut c = &b"1234"[..];
+ let mut c = &b"56789"[..];
+ assert_eq!(c, b"9");
+ fn take_eof() {
+ struct R;
+ impl Read for R {
+ Err(io::Error::new(io::ErrorKind::Other, ""))
+ let mut buf = [0; 1];
+ assert_eq!(0, R.take(0).read(&mut buf).unwrap());
+ fn bench_read_to_end(b: &mut test::Bencher) {
+ let mut lr = repeat(1).take(10000000);
+ let mut vec = Vec::with_capacity(1024);
+ super::read_to_end(&mut lr, &mut vec)
@@ -0,0 +1,24 @@
+//! The I/O Prelude
+//! The purpose of this module is to alleviate imports of many common I/O traits
+//! by adding a glob import to the top of I/O heavy modules:
+//! # #![allow(unused_imports)]
+pub use super::{Read, Write, BufRead, Seek};
@@ -0,0 +1,200 @@
+// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
+#![allow(missing_copy_implementations)]
+use io::{self, Read, Write, ErrorKind, BufRead};
+/// Copies the entire contents of a reader into a writer.
+/// This function will continuously read data from `reader` and then
+/// write it into `writer` in a streaming fashion until `reader`
+/// returns EOF.
+/// On success, the total number of bytes that were copied from
+/// `reader` to `writer` is returned.
+/// # Errors
+/// This function will return an error immediately if any call to `read` or
+/// `write` returns an error. All instances of `ErrorKind::Interrupted` are
+/// handled by this function and the underlying operation is retried.
+/// let mut reader: &[u8] = b"hello";
+/// let mut writer: Vec<u8> = vec![];
+/// try!(io::copy(&mut reader, &mut writer));
+/// assert_eq!(reader, &writer[..]);
+pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> io::Result<u64>
+ where R: Read, W: Write
+ let mut buf = [0; super::DEFAULT_BUF_SIZE];
+ let len = match reader.read(&mut buf) {
+ Ok(0) => return Ok(written),
+ Ok(len) => len,
+ writer.write_all(&buf[..len])?;
+ written += len as u64;
+/// A reader which is always at EOF.
+/// This struct is generally created by calling [`empty()`][empty]. Please see
+/// the documentation of `empty()` for more details.
+/// [empty]: fn.empty.html
+pub struct Empty { _priv: () }
+/// Constructs a new handle to an empty reader.
+/// All reads from the returned reader will return `Ok(0)`.
+/// A slightly sad example of not reading anything into a buffer:
+/// use std::io::Read;
+/// # fn foo() -> io::Result<String> {
+/// try!(io::empty().read_to_string(&mut buffer));
+/// # Ok(buffer)
+pub fn empty() -> Empty { Empty { _priv: () } }
+impl Read for Empty {
+ fn read(&mut self, _buf: &mut [u8]) -> io::Result<usize> { Ok(0) }
+impl BufRead for Empty {
+ fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(&[]) }
+ fn consume(&mut self, _n: usize) {}
+/// A reader which yields one byte over and over and over and over and over and...
+/// This struct is generally created by calling [`repeat()`][repeat]. Please
+/// see the documentation of `repeat()` for more details.
+/// [repeat]: fn.repeat.html
+pub struct Repeat { byte: u8 }
+/// Creates an instance of a reader that infinitely repeats one byte.
+/// All reads from this reader will succeed by filling the specified buffer with
+/// the given byte.
+pub fn repeat(byte: u8) -> Repeat { Repeat { byte: byte } }
+impl Read for Repeat {
+ for slot in &mut *buf {
+ *slot = self.byte;
+/// A writer which will move data into the void.
+/// This struct is generally created by calling [`sink()`][sink]. Please
+/// see the documentation of `sink()` for more details.
+/// [sink]: fn.sink.html
+pub struct Sink { _priv: () }
+/// Creates an instance of a writer which will successfully consume all data.
+/// All calls to `write` on the returned instance will return `Ok(buf.len())`
+/// and the contents of the buffer will not be inspected.
+pub fn sink() -> Sink { Sink { _priv: () } }
+impl Write for Sink {
+ use io::{copy, sink, empty, repeat};
+ fn copy_copies() {
+ let mut r = repeat(0).take(4);
+ let mut w = sink();
+ assert_eq!(copy(&mut r, &mut w).unwrap(), 4);
+ let mut r = repeat(0).take(1 << 17);
+ assert_eq!(copy(&mut r as &mut Read, &mut w as &mut Write).unwrap(), 1 << 17);
+ fn sink_sinks() {
+ let mut s = sink();
+ assert_eq!(s.write(&[]).unwrap(), 0);
+ assert_eq!(s.write(&[0]).unwrap(), 1);
+ assert_eq!(s.write(&[0; 1024]).unwrap(), 1024);
+ assert_eq!(s.by_ref().write(&[0; 1024]).unwrap(), 1024);
+ fn empty_reads() {
+ let mut e = empty();
+ assert_eq!(e.read(&mut []).unwrap(), 0);
+ assert_eq!(e.read(&mut [0]).unwrap(), 0);
+ assert_eq!(e.read(&mut [0; 1024]).unwrap(), 0);
+ assert_eq!(e.by_ref().read(&mut [0; 1024]).unwrap(), 0);
+ fn repeat_repeats() {
+ let mut r = repeat(4);
+ let mut b = [0; 1024];
+ assert_eq!(r.read(&mut b).unwrap(), 1024);
+ assert!(b.iter().all(|b| *b == 4));
+ fn take_some_bytes() {
+ assert_eq!(repeat(4).take(100).bytes().count(), 100);
+ assert_eq!(repeat(4).take(100).bytes().next().unwrap().unwrap(), 4);
+ assert_eq!(repeat(1).take(10).chain(repeat(2).take(10)).bytes().count(), 20);
@@ -0,0 +1,1909 @@
+ /// [fillbuf]: #tymethod.fill_buf
+#[stable(feature = "chain_bufread", since = "1.9.0")]
+impl<T: BufRead, U: BufRead> BufRead for Chain<T, U> {
+ match self.first.fill_buf()? {
+ buf if buf.len() == 0 => { self.done_first = true; }
+ buf => return Ok(buf),
+ self.second.fill_buf()
+ self.first.consume(amt)
+ self.second.consume(amt)
+ fn cmp_bufread<Br1: BufRead, Br2: BufRead>(mut br1: Br1, mut br2: Br2, exp: &[u8]) {
+ let mut cat = Vec::new();
+ let consume = {
+ let buf1 = br1.fill_buf().unwrap();
+ let buf2 = br2.fill_buf().unwrap();
+ let minlen = if buf1.len() < buf2.len() { buf1.len() } else { buf2.len() };
+ assert_eq!(buf1[..minlen], buf2[..minlen]);
+ cat.extend_from_slice(&buf1[..minlen]);
+ minlen
+ if consume == 0 {
+ br1.consume(consume);
+ br2.consume(consume);
+ assert_eq!(br1.fill_buf().unwrap().len(), 0);
+ assert_eq!(br2.fill_buf().unwrap().len(), 0);
+ assert_eq!(&cat[..], &exp[..])
+ fn chain_bufread() {
+ let testdata = b"ABCDEFGHIJKL";
+ let chain1 = (&testdata[..3]).chain(&testdata[3..6])
+ .chain(&testdata[6..9])
+ .chain(&testdata[9..]);
+ let chain2 = (&testdata[..4]).chain(&testdata[4..8])
+ .chain(&testdata[8..]);
+ cmp_bufread(chain1, chain2, &testdata[..]);
+const DEFAULT_BUF_SIZE: usize = 8 * 1024;
+ Some(s) => Ok(s.chars().next().unwrap()),
+ }).join().unwrap_err();
@@ -0,0 +1,391 @@
@@ -0,0 +1,1920 @@
+//! let reader = BufReader::new(f);
+//! println!("{}", try!(line));
+//! There are a number of [functions][functions-list] that offer access to various
+//! [functions-list]: #functions-1
+ return Ok(&[]);
+ impl BufRead for R {
+ fn consume(&mut self, _amt: usize) { }
+ assert_eq!(b"", R.take(0).fill_buf().unwrap());
@@ -0,0 +1,1921 @@
@@ -0,0 +1,585 @@
+ let mut rem = try!(self.fill_buf());
+ try!(rem.read(buf))
+ self.cap = try!(self.inner.read(&mut self.buf));
+ result = try!(self.inner.seek(SeekFrom::Current(offset)));
+ try!(self.inner.seek(SeekFrom::Current(-remainder)));
+ result = try!(self.inner.seek(SeekFrom::Current(n)));
+ result = try!(self.inner.seek(pos));
+ try!(self.flush_buf());
+ let n = try!(self.inner.write(&buf[..i + 1]));
+ let n = try!(Read::read(&mut try!(self.fill_buf()), buf));
+ let amt = try!((&mut self.inner[(pos as usize)..]).write(data));
+ let amt = try!((&mut self.inner[(pos as usize)..]).write(buf));
@@ -0,0 +1,400 @@
+ #[allow(missing_docs)]
+ #[unstable(feature = "read_exact_old", reason = "recently added",
+ #[rustc_deprecated(since = "1.6.0", reason = "renamed to UnexpectedEof")]
+ UnexpectedEOF,
+ #[allow(deprecated)] // remove with UnexpectedEOF
+ ErrorKind::UnexpectedEOF => "unexpected end of file",
+ if try!(self.write(data)) == data.len() {
@@ -0,0 +1,2005 @@
+ /// Creates a reader adaptor which will write all read data into the given
+ /// output stream.
+ /// Whenever the returned `Read` instance is read it will write the read
+ /// data to `out`. The current semantics of this implementation imply that
+ /// a `write` error will not report how much data was initially read.
+ /// let mut buffer1 = Vec::with_capacity(10);
+ /// let mut buffer2 = Vec::with_capacity(10);
+ /// // write the output to buffer1 as we read
+ /// let mut handle = f.tee(&mut buffer1);
+ /// try!(handle.read(&mut buffer2));
+ #[rustc_deprecated(reason = "error handling semantics unclear and \
+ don't seem to have an ergonomic resolution",
+ since = "1.6.0")]
+ #[allow(deprecated)]
+ fn tee<W: Write>(self, out: W) -> Tee<Self, W> where Self: Sized {
+ Tee { reader: self, writer: out }
+ /// Creates a new writer which will write all data to both this writer and
+ /// another writer.
+ /// All data written to the returned writer will both be written to `self`
+ /// as well as `other`. Note that the error semantics of the current
+ /// implementation do not precisely track where errors happen. For example
+ /// an error on the second call to `write` will not report that the first
+ /// call to `write` succeeded.
+ /// let mut buffer1 = try!(File::create("foo.txt"));
+ /// let mut buffer2 = Vec::new();
+ /// let mut handle = buffer1.broadcast(&mut buffer2);
+ /// try!(handle.write(b"some bytes"));
+ fn broadcast<W: Write>(self, other: W) -> Broadcast<Self, W>
+ where Self: Sized
+ Broadcast { first: self, second: other }
+/// A `Write` adaptor which will write data to multiple locations.
+/// This struct is generally created by calling [`broadcast()`][broadcast] on a
+/// writer. Please see the documentation of `broadcast()` for more details.
+/// [broadcast]: trait.Write.html#method.broadcast
+#[unstable(feature = "io", reason = "awaiting stability of Write::broadcast",
+#[rustc_deprecated(reason = "error handling semantics unclear and \
+pub struct Broadcast<T, U> {
+impl<T: Write, U: Write> Write for Broadcast<T, U> {
+ fn write(&mut self, data: &[u8]) -> Result<usize> {
+ let n = try!(self.first.write(data));
+ // FIXME: what if the write fails? (we wrote something)
+ try!(self.second.write_all(&data[..n]));
+ fn flush(&mut self) -> Result<()> {
+ self.first.flush().and(self.second.flush())
+ match try!(self.first.read(buf)) {
+ let n = try!(self.inner.read(&mut buf[..max]));
+ let buf = try!(self.inner.fill_buf());
+/// An adaptor which will emit all read data to a specified writer as well.
+/// This struct is generally created by calling [`tee()`][tee] on a reader.
+/// Please see the documentation of `tee()` for more details.
+/// [tee]: trait.Read.html#method.tee
+#[unstable(feature = "io", reason = "awaiting stability of Read::tee",
+pub struct Tee<R, W> {
+ reader: R,
+ writer: W,
+impl<R: Read, W: Write> Read for Tee<R, W> {
+ let n = try!(self.reader.read(buf));
+ // FIXME: what if the write fails? (we read something)
+ try!(self.writer.write_all(&buf[..n]));
@@ -0,0 +1,227 @@
+ try!(writer.write_all(&buf[..len]));
+ fn tee() {
+ let mut buf = [0; 10];
+ let mut ptr: &mut [u8] = &mut buf;
+ assert_eq!(repeat(4).tee(&mut ptr).take(5).read(&mut [0; 10]).unwrap(), 5);
+ assert_eq!(buf, [4, 4, 4, 4, 4, 0, 0, 0, 0, 0]);
+ fn broadcast() {
+ let mut buf1 = [0; 10];
+ let mut buf2 = [0; 10];
+ let mut ptr1: &mut [u8] = &mut buf1;
+ let mut ptr2: &mut [u8] = &mut buf2;
+ assert_eq!((&mut ptr1).broadcast(&mut ptr2)
+ .write(&[1, 2, 3]).unwrap(), 3);
+ assert_eq!(buf1, buf2);
+ assert_eq!(buf1, [1, 2, 3, 0, 0, 0, 0, 0, 0, 0]);