123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- *DECK CSICO
- SUBROUTINE CSICO (A, LDA, N, KPVT, RCOND, Z)
- C***BEGIN PROLOGUE CSICO
- C***PURPOSE Factor a complex symmetric matrix by elimination with
- C symmetric pivoting and estimate the condition number of the
- C matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2C1
- C***TYPE COMPLEX (SSICO-S, DSICO-D, CHICO-C, CSICO-C)
- C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
- C MATRIX FACTORIZATION, SYMMETRIC
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C CSICO factors a complex symmetric matrix by elimination with
- C symmetric pivoting and estimates the condition of the matrix.
- C
- C If RCOND is not needed, CSIFA is slightly faster.
- C To solve A*X = B , follow CSICO by CSISL.
- C To compute INVERSE(A)*C , follow CSICO by CSISL.
- C To compute INVERSE(A) , follow CSICO by CSIDI.
- C To compute DETERMINANT(A) , follow CSICO by CSIDI.
- C
- C On Entry
- C
- C A COMPLEX(LDA, N)
- C the symmetric matrix to be factored.
- C Only the diagonal and upper triangle are used.
- C
- C LDA INTEGER
- C the leading dimension of the array A .
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C On Return
- C
- C A a block diagonal matrix and the multipliers which
- C were used to obtain it.
- C The factorization can be written A = U*D*TRANS(U)
- C where U is a product of permutation and unit
- C upper triangular matrices , TRANS(U) is the
- C transpose of U , and D is block diagonal
- C with 1 by 1 and 2 by 2 blocks.
- C
- C KVPT INTEGER(N)
- C an integer vector of pivot indices.
- C
- C RCOND REAL
- C an estimate of the reciprocal condition of A .
- C For the system A*X = B , relative perturbations
- C in A and B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then A may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows.
- C
- C Z COMPLEX(N)
- C a work vector whose contents are usually unimportant.
- C If A is close to a singular matrix, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CDOTU, CSIFA, CSSCAL, SCASUM
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891107 Corrected category and modified routine equivalence
- C list. (WRB)
- C 891107 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CSICO
- INTEGER LDA,N,KPVT(*)
- COMPLEX A(LDA,*),Z(*)
- REAL RCOND
- C
- COMPLEX AK,AKM1,BK,BKM1,CDOTU,DENOM,EK,T
- REAL ANORM,S,SCASUM,YNORM
- INTEGER I,INFO,J,JM1,K,KP,KPS,KS
- COMPLEX ZDUM,ZDUM2,CSIGN1
- REAL CABS1
- CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
- CSIGN1(ZDUM,ZDUM2) = CABS1(ZDUM)*(ZDUM2/CABS1(ZDUM2))
- C
- C FIND NORM OF A USING ONLY UPPER HALF
- C
- C***FIRST EXECUTABLE STATEMENT CSICO
- DO 30 J = 1, N
- Z(J) = CMPLX(SCASUM(J,A(1,J),1),0.0E0)
- JM1 = J - 1
- IF (JM1 .LT. 1) GO TO 20
- DO 10 I = 1, JM1
- Z(I) = CMPLX(REAL(Z(I))+CABS1(A(I,J)),0.0E0)
- 10 CONTINUE
- 20 CONTINUE
- 30 CONTINUE
- ANORM = 0.0E0
- DO 40 J = 1, N
- ANORM = MAX(ANORM,REAL(Z(J)))
- 40 CONTINUE
- C
- C FACTOR
- C
- CALL CSIFA(A,LDA,N,KPVT,INFO)
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
- C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
- C GROWTH IN THE ELEMENTS OF W WHERE U*D*W = E .
- C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
- C
- C SOLVE U*D*W = E
- C
- EK = (1.0E0,0.0E0)
- DO 50 J = 1, N
- Z(J) = (0.0E0,0.0E0)
- 50 CONTINUE
- K = N
- 60 IF (K .EQ. 0) GO TO 120
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- KP = ABS(KPVT(K))
- KPS = K + 1 - KS
- IF (KP .EQ. KPS) GO TO 70
- T = Z(KPS)
- Z(KPS) = Z(KP)
- Z(KP) = T
- 70 CONTINUE
- IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,Z(K))
- Z(K) = Z(K) + EK
- CALL CAXPY(K-KS,Z(K),A(1,K),1,Z(1),1)
- IF (KS .EQ. 1) GO TO 80
- IF (CABS1(Z(K-1)) .NE. 0.0E0) EK = CSIGN1(EK,Z(K-1))
- Z(K-1) = Z(K-1) + EK
- CALL CAXPY(K-KS,Z(K-1),A(1,K-1),1,Z(1),1)
- 80 CONTINUE
- IF (KS .EQ. 2) GO TO 100
- IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 90
- S = CABS1(A(K,K))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- EK = CMPLX(S,0.0E0)*EK
- 90 CONTINUE
- IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
- IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
- GO TO 110
- 100 CONTINUE
- AK = A(K,K)/A(K-1,K)
- AKM1 = A(K-1,K-1)/A(K-1,K)
- BK = Z(K)/A(K-1,K)
- BKM1 = Z(K-1)/A(K-1,K)
- DENOM = AK*AKM1 - 1.0E0
- Z(K) = (AKM1*BK - BKM1)/DENOM
- Z(K-1) = (AK*BKM1 - BK)/DENOM
- 110 CONTINUE
- K = K - KS
- GO TO 60
- 120 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- C SOLVE TRANS(U)*Y = W
- C
- K = 1
- 130 IF (K .GT. N) GO TO 160
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- IF (K .EQ. 1) GO TO 150
- Z(K) = Z(K) + CDOTU(K-1,A(1,K),1,Z(1),1)
- IF (KS .EQ. 2)
- 1 Z(K+1) = Z(K+1) + CDOTU(K-1,A(1,K+1),1,Z(1),1)
- KP = ABS(KPVT(K))
- IF (KP .EQ. K) GO TO 140
- T = Z(K)
- Z(K) = Z(KP)
- Z(KP) = T
- 140 CONTINUE
- 150 CONTINUE
- K = K + KS
- GO TO 130
- 160 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- YNORM = 1.0E0
- C
- C SOLVE U*D*V = Y
- C
- K = N
- 170 IF (K .EQ. 0) GO TO 230
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- IF (K .EQ. KS) GO TO 190
- KP = ABS(KPVT(K))
- KPS = K + 1 - KS
- IF (KP .EQ. KPS) GO TO 180
- T = Z(KPS)
- Z(KPS) = Z(KP)
- Z(KP) = T
- 180 CONTINUE
- CALL CAXPY(K-KS,Z(K),A(1,K),1,Z(1),1)
- IF (KS .EQ. 2) CALL CAXPY(K-KS,Z(K-1),A(1,K-1),1,Z(1),1)
- 190 CONTINUE
- IF (KS .EQ. 2) GO TO 210
- IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 200
- S = CABS1(A(K,K))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 200 CONTINUE
- IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
- IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
- GO TO 220
- 210 CONTINUE
- AK = A(K,K)/A(K-1,K)
- AKM1 = A(K-1,K-1)/A(K-1,K)
- BK = Z(K)/A(K-1,K)
- BKM1 = Z(K-1)/A(K-1,K)
- DENOM = AK*AKM1 - 1.0E0
- Z(K) = (AKM1*BK - BKM1)/DENOM
- Z(K-1) = (AK*BKM1 - BK)/DENOM
- 220 CONTINUE
- K = K - KS
- GO TO 170
- 230 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE TRANS(U)*Z = V
- C
- K = 1
- 240 IF (K .GT. N) GO TO 270
- KS = 1
- IF (KPVT(K) .LT. 0) KS = 2
- IF (K .EQ. 1) GO TO 260
- Z(K) = Z(K) + CDOTU(K-1,A(1,K),1,Z(1),1)
- IF (KS .EQ. 2)
- 1 Z(K+1) = Z(K+1) + CDOTU(K-1,A(1,K+1),1,Z(1),1)
- KP = ABS(KPVT(K))
- IF (KP .EQ. K) GO TO 250
- T = Z(K)
- Z(K) = Z(KP)
- Z(KP) = T
- 250 CONTINUE
- 260 CONTINUE
- K = K + KS
- GO TO 240
- 270 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
- RETURN
- END
|