123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- /* From: @(#)k_cos.c 1.3 95/01/18 */
- /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
- #include "cdefs-compat.h"
- //__FBSDID("$FreeBSD: src/lib/msun/ld80/k_cosl.c,v 1.1 2008/02/17 07:32:14 das Exp $");
- /*
- * ld80 version of k_cos.c. See ../src/k_cos.c for most comments.
- */
- #include "math_private.h"
- /*
- * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
- * |cos(x) - c(x)| < 2**-75.1
- *
- * The coefficients of c(x) were generated by a pari-gp script using
- * a Remez algorithm that searches for the best higher coefficients
- * after rounding leading coefficients to a specified precision.
- *
- * Simpler methods like Chebyshev or basic Remez barely suffice for
- * cos() in 64-bit precision, because we want the coefficient of x^2
- * to be precisely -0.5 so that multiplying by it is exact, and plain
- * rounding of the coefficients of a good polynomial approximation only
- * gives this up to about 64-bit precision. Plain rounding also gives
- * a mediocre approximation for the coefficient of x^4, but a rounding
- * error of 0.5 ulps for this coefficient would only contribute ~0.01
- * ulps to the final error, so this is unimportant. Rounding errors in
- * higher coefficients are even less important.
- *
- * In fact, coefficients above the x^4 one only need to have 53-bit
- * precision, and this is more efficient. We get this optimization
- * almost for free from the complications needed to search for the best
- * higher coefficients.
- */
- static const double
- one = 1.0;
- #if defined(__amd64__) || defined(__i386__)
- /* Long double constants are slow on these arches, and broken on i386. */
- static const volatile double
- C1hi = 0.041666666666666664, /* 0x15555555555555.0p-57 */
- C1lo = 2.2598839032744733e-18; /* 0x14d80000000000.0p-111 */
- #define C1 ((long double)C1hi + C1lo)
- #else
- static const long double
- C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
- #endif
- static const double
- C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
- C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
- C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
- C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
- C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
- C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
- long double
- __kernel_cosl(long double x, long double y)
- {
- long double hz,z,r,w;
- z = x*x;
- r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
- hz = 0.5*z;
- w = one-hz;
- return w + (((one-w)-hz) + (z*r-x*y));
- }
|