k_cosl.c 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. /* From: @(#)k_cos.c 1.3 95/01/18 */
  2. /*
  3. * ====================================================
  4. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  5. * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
  6. *
  7. * Developed at SunSoft, a Sun Microsystems, Inc. business.
  8. * Permission to use, copy, modify, and distribute this
  9. * software is freely granted, provided that this notice
  10. * is preserved.
  11. * ====================================================
  12. */
  13. #include "cdefs-compat.h"
  14. //__FBSDID("$FreeBSD: src/lib/msun/ld80/k_cosl.c,v 1.1 2008/02/17 07:32:14 das Exp $");
  15. /*
  16. * ld80 version of k_cos.c. See ../src/k_cos.c for most comments.
  17. */
  18. #include "math_private.h"
  19. /*
  20. * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
  21. * |cos(x) - c(x)| < 2**-75.1
  22. *
  23. * The coefficients of c(x) were generated by a pari-gp script using
  24. * a Remez algorithm that searches for the best higher coefficients
  25. * after rounding leading coefficients to a specified precision.
  26. *
  27. * Simpler methods like Chebyshev or basic Remez barely suffice for
  28. * cos() in 64-bit precision, because we want the coefficient of x^2
  29. * to be precisely -0.5 so that multiplying by it is exact, and plain
  30. * rounding of the coefficients of a good polynomial approximation only
  31. * gives this up to about 64-bit precision. Plain rounding also gives
  32. * a mediocre approximation for the coefficient of x^4, but a rounding
  33. * error of 0.5 ulps for this coefficient would only contribute ~0.01
  34. * ulps to the final error, so this is unimportant. Rounding errors in
  35. * higher coefficients are even less important.
  36. *
  37. * In fact, coefficients above the x^4 one only need to have 53-bit
  38. * precision, and this is more efficient. We get this optimization
  39. * almost for free from the complications needed to search for the best
  40. * higher coefficients.
  41. */
  42. static const double
  43. one = 1.0;
  44. #if defined(__amd64__) || defined(__i386__)
  45. /* Long double constants are slow on these arches, and broken on i386. */
  46. static const volatile double
  47. C1hi = 0.041666666666666664, /* 0x15555555555555.0p-57 */
  48. C1lo = 2.2598839032744733e-18; /* 0x14d80000000000.0p-111 */
  49. #define C1 ((long double)C1hi + C1lo)
  50. #else
  51. static const long double
  52. C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
  53. #endif
  54. static const double
  55. C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
  56. C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
  57. C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
  58. C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
  59. C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
  60. C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
  61. long double
  62. __kernel_cosl(long double x, long double y)
  63. {
  64. long double hz,z,r,w;
  65. z = x*x;
  66. r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
  67. hz = 0.5*z;
  68. w = one-hz;
  69. return w + (((one-w)-hz) + (z*r-x*y));
  70. }