raw.rs 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. use core::cmp::min;
  2. use managed::Managed;
  3. use {Error, Result};
  4. use wire::{IpVersion, IpProtocol, Ipv4Repr, Ipv4Packet};
  5. use socket::{IpRepr, Socket};
  6. use storage::{Resettable, RingBuffer};
  7. /// A buffered raw IP packet.
  8. #[derive(Debug)]
  9. pub struct PacketBuffer<'a> {
  10. size: usize,
  11. payload: Managed<'a, [u8]>,
  12. }
  13. impl<'a> PacketBuffer<'a> {
  14. /// Create a buffered packet.
  15. pub fn new<T>(payload: T) -> PacketBuffer<'a>
  16. where T: Into<Managed<'a, [u8]>> {
  17. PacketBuffer {
  18. size: 0,
  19. payload: payload.into(),
  20. }
  21. }
  22. fn as_ref<'b>(&'b self) -> &'b [u8] {
  23. &self.payload[..self.size]
  24. }
  25. fn as_mut<'b>(&'b mut self) -> &'b mut [u8] {
  26. &mut self.payload[..self.size]
  27. }
  28. fn resize<'b>(&'b mut self, size: usize) -> Result<&'b mut Self> {
  29. if self.payload.len() >= size {
  30. self.size = size;
  31. Ok(self)
  32. } else {
  33. Err(Error::Truncated)
  34. }
  35. }
  36. }
  37. impl<'a> Resettable for PacketBuffer<'a> {
  38. fn reset(&mut self) {
  39. self.size = 0;
  40. }
  41. }
  42. /// A raw IP packet ring buffer.
  43. pub type SocketBuffer<'a, 'b: 'a> = RingBuffer<'a, PacketBuffer<'b>>;
  44. /// A raw IP socket.
  45. ///
  46. /// A raw socket is bound to a specific IP protocol, and owns
  47. /// transmit and receive packet buffers.
  48. #[derive(Debug)]
  49. pub struct RawSocket<'a, 'b: 'a> {
  50. debug_id: usize,
  51. ip_version: IpVersion,
  52. ip_protocol: IpProtocol,
  53. rx_buffer: SocketBuffer<'a, 'b>,
  54. tx_buffer: SocketBuffer<'a, 'b>,
  55. }
  56. impl<'a, 'b> RawSocket<'a, 'b> {
  57. /// Create a raw IP socket bound to the given IP version and datagram protocol,
  58. /// with the given buffers.
  59. pub fn new(ip_version: IpVersion, ip_protocol: IpProtocol,
  60. rx_buffer: SocketBuffer<'a, 'b>,
  61. tx_buffer: SocketBuffer<'a, 'b>) -> Socket<'a, 'b> {
  62. Socket::Raw(RawSocket {
  63. debug_id: 0,
  64. ip_version,
  65. ip_protocol,
  66. rx_buffer,
  67. tx_buffer,
  68. })
  69. }
  70. /// Return the debug identifier.
  71. #[inline]
  72. pub fn debug_id(&self) -> usize {
  73. self.debug_id
  74. }
  75. /// Set the debug identifier.
  76. ///
  77. /// The debug identifier is a number printed in socket trace messages.
  78. /// It could as well be used by the user code.
  79. pub fn set_debug_id(&mut self, id: usize) {
  80. self.debug_id = id;
  81. }
  82. /// Return the IP version the socket is bound to.
  83. #[inline]
  84. pub fn ip_version(&self) -> IpVersion {
  85. self.ip_version
  86. }
  87. /// Return the IP protocol the socket is bound to.
  88. #[inline]
  89. pub fn ip_protocol(&self) -> IpProtocol {
  90. self.ip_protocol
  91. }
  92. /// Check whether the transmit buffer is full.
  93. #[inline]
  94. pub fn can_send(&self) -> bool {
  95. !self.tx_buffer.full()
  96. }
  97. /// Check whether the receive buffer is not empty.
  98. #[inline]
  99. pub fn can_recv(&self) -> bool {
  100. !self.rx_buffer.empty()
  101. }
  102. /// Enqueue a packet to send, and return a pointer to its payload.
  103. ///
  104. /// This function returns `Err(Error::Exhausted)` if the size is greater than
  105. /// the transmit packet buffer size.
  106. ///
  107. /// If the buffer is filled in a way that does not match the socket's
  108. /// IP version or protocol, the packet will be silently dropped.
  109. ///
  110. /// **Note:** The IP header is parsed and reserialized, and may not match
  111. /// the header actually transmitted bit for bit.
  112. pub fn send(&mut self, size: usize) -> Result<&mut [u8]> {
  113. let packet_buf = self.tx_buffer.try_enqueue(|buf| buf.resize(size))?;
  114. net_trace!("[{}]:{}:{}: buffer to send {} octets",
  115. self.debug_id, self.ip_version, self.ip_protocol,
  116. packet_buf.size);
  117. Ok(packet_buf.as_mut())
  118. }
  119. /// Enqueue a packet to send, and fill it from a slice.
  120. ///
  121. /// See also [send](#method.send).
  122. pub fn send_slice(&mut self, data: &[u8]) -> Result<()> {
  123. self.send(data.len())?.copy_from_slice(data);
  124. Ok(())
  125. }
  126. /// Dequeue a packet, and return a pointer to the payload.
  127. ///
  128. /// This function returns `Err(Error::Exhausted)` if the receive buffer is empty.
  129. ///
  130. /// **Note:** The IP header is parsed and reserialized, and may not match
  131. /// the header actually received bit for bit.
  132. pub fn recv(&mut self) -> Result<&[u8]> {
  133. let packet_buf = self.rx_buffer.dequeue()?;
  134. net_trace!("[{}]:{}:{}: receive {} buffered octets",
  135. self.debug_id, self.ip_version, self.ip_protocol,
  136. packet_buf.size);
  137. Ok(&packet_buf.as_ref())
  138. }
  139. /// Dequeue a packet, and copy the payload into the given slice.
  140. ///
  141. /// See also [recv](#method.recv).
  142. pub fn recv_slice(&mut self, data: &mut [u8]) -> Result<usize> {
  143. let buffer = self.recv()?;
  144. let length = min(data.len(), buffer.len());
  145. data[..length].copy_from_slice(&buffer[..length]);
  146. Ok(length)
  147. }
  148. pub(crate) fn process(&mut self, ip_repr: &IpRepr, payload: &[u8]) -> Result<()> {
  149. if ip_repr.version() != self.ip_version { return Err(Error::Rejected) }
  150. if ip_repr.protocol() != self.ip_protocol { return Err(Error::Rejected) }
  151. let header_len = ip_repr.buffer_len();
  152. let total_len = header_len + payload.len();
  153. let packet_buf = self.rx_buffer.try_enqueue(|buf| buf.resize(total_len))?;
  154. ip_repr.emit(&mut packet_buf.as_mut()[..header_len]);
  155. packet_buf.as_mut()[header_len..].copy_from_slice(payload);
  156. net_trace!("[{}]:{}:{}: receiving {} octets",
  157. self.debug_id, self.ip_version, self.ip_protocol,
  158. packet_buf.size);
  159. Ok(())
  160. }
  161. pub(crate) fn dispatch<F>(&mut self, emit: F) -> Result<()>
  162. where F: FnOnce((IpRepr, &[u8])) -> Result<()> {
  163. fn prepare(protocol: IpProtocol, buffer: &mut [u8]) -> Result<(IpRepr, &[u8])> {
  164. match IpVersion::of_packet(buffer.as_ref())? {
  165. IpVersion::Ipv4 => {
  166. let mut packet = Ipv4Packet::new_checked(buffer.as_mut())?;
  167. if packet.protocol() != protocol { return Err(Error::Unaddressable) }
  168. packet.fill_checksum();
  169. let packet = Ipv4Packet::new(&*packet.into_inner());
  170. let ipv4_repr = Ipv4Repr::parse(&packet)?;
  171. Ok((IpRepr::Ipv4(ipv4_repr), packet.payload()))
  172. }
  173. IpVersion::Unspecified => unreachable!(),
  174. IpVersion::__Nonexhaustive => unreachable!()
  175. }
  176. }
  177. let mut packet_buf = self.tx_buffer.dequeue()?;
  178. match prepare(self.ip_protocol, packet_buf.as_mut()) {
  179. Ok((ip_repr, raw_packet)) => {
  180. net_trace!("[{}]:{}:{}: sending {} octets",
  181. self.debug_id, self.ip_version, self.ip_protocol,
  182. ip_repr.buffer_len() + raw_packet.len());
  183. emit((ip_repr, raw_packet))
  184. }
  185. Err(error) => {
  186. net_debug!("[{}]:{}:{}: dropping outgoing packet ({})",
  187. self.debug_id, self.ip_version, self.ip_protocol,
  188. error);
  189. // This case is a bit special because in every other socket, no matter what data
  190. // is put into the socket, it can be sent, but it's possible to put data into
  191. // a raw socket that may not be, and we're generic over the result type, so
  192. // we can't possibly return Ok(()) here.
  193. Err(Error::Rejected)
  194. }
  195. }
  196. }
  197. }
  198. #[cfg(test)]
  199. mod test {
  200. use wire::{Ipv4Address, IpRepr, Ipv4Repr};
  201. use super::*;
  202. fn buffer(packets: usize) -> SocketBuffer<'static, 'static> {
  203. let mut storage = vec![];
  204. for _ in 0..packets {
  205. storage.push(PacketBuffer::new(vec![0; 24]))
  206. }
  207. SocketBuffer::new(storage)
  208. }
  209. fn socket(rx_buffer: SocketBuffer<'static, 'static>,
  210. tx_buffer: SocketBuffer<'static, 'static>)
  211. -> RawSocket<'static, 'static> {
  212. match RawSocket::new(IpVersion::Ipv4, IpProtocol::Unknown(63),
  213. rx_buffer, tx_buffer) {
  214. Socket::Raw(socket) => socket,
  215. _ => unreachable!()
  216. }
  217. }
  218. const HEADER_REPR: IpRepr = IpRepr::Ipv4(Ipv4Repr {
  219. src_addr: Ipv4Address([10, 0, 0, 1]),
  220. dst_addr: Ipv4Address([10, 0, 0, 2]),
  221. protocol: IpProtocol::Unknown(63),
  222. payload_len: 4
  223. });
  224. const PACKET_BYTES: [u8; 24] = [
  225. 0x45, 0x00, 0x00, 0x18,
  226. 0x00, 0x00, 0x40, 0x00,
  227. 0x40, 0x3f, 0x00, 0x00,
  228. 0x0a, 0x00, 0x00, 0x01,
  229. 0x0a, 0x00, 0x00, 0x02,
  230. 0xaa, 0x00, 0x00, 0xff
  231. ];
  232. const PACKET_PAYLOAD: [u8; 4] = [
  233. 0xaa, 0x00, 0x00, 0xff
  234. ];
  235. #[test]
  236. fn test_send_truncated() {
  237. let mut socket = socket(buffer(0), buffer(1));
  238. assert_eq!(socket.send_slice(&[0; 32][..]), Err(Error::Truncated));
  239. }
  240. #[test]
  241. fn test_send_dispatch() {
  242. let mut socket = socket(buffer(0), buffer(1));
  243. assert!(socket.can_send());
  244. assert_eq!(socket.dispatch(|_| unreachable!()),
  245. Err(Error::Exhausted));
  246. assert_eq!(socket.send_slice(&PACKET_BYTES[..]), Ok(()));
  247. assert_eq!(socket.send_slice(b""), Err(Error::Exhausted));
  248. assert!(!socket.can_send());
  249. assert_eq!(socket.dispatch(|(ip_repr, ip_payload)| {
  250. assert_eq!(ip_repr, HEADER_REPR);
  251. assert_eq!(ip_payload, &PACKET_PAYLOAD);
  252. Err(Error::Unaddressable)
  253. }), Err(Error::Unaddressable));
  254. /*assert!(!socket.can_send());*/
  255. assert_eq!(socket.dispatch(|(ip_repr, ip_payload)| {
  256. assert_eq!(ip_repr, HEADER_REPR);
  257. assert_eq!(ip_payload, &PACKET_PAYLOAD);
  258. Ok(())
  259. }), /*Ok(())*/ Err(Error::Exhausted));
  260. assert!(socket.can_send());
  261. }
  262. #[test]
  263. fn test_send_illegal() {
  264. let mut socket = socket(buffer(0), buffer(1));
  265. let mut wrong_version = PACKET_BYTES.clone();
  266. Ipv4Packet::new(&mut wrong_version).set_version(5);
  267. assert_eq!(socket.send_slice(&wrong_version[..]), Ok(()));
  268. assert_eq!(socket.dispatch(|_| unreachable!()),
  269. Err(Error::Rejected));
  270. let mut wrong_protocol = PACKET_BYTES.clone();
  271. Ipv4Packet::new(&mut wrong_protocol).set_protocol(IpProtocol::Tcp);
  272. assert_eq!(socket.send_slice(&wrong_protocol[..]), Ok(()));
  273. assert_eq!(socket.dispatch(|_| unreachable!()),
  274. Err(Error::Rejected));
  275. }
  276. #[test]
  277. fn test_recv_process() {
  278. let mut socket = socket(buffer(1), buffer(0));
  279. assert!(!socket.can_recv());
  280. let mut cksumd_packet = PACKET_BYTES.clone();
  281. Ipv4Packet::new(&mut cksumd_packet).fill_checksum();
  282. assert_eq!(socket.recv(), Err(Error::Exhausted));
  283. assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD),
  284. Ok(()));
  285. assert!(socket.can_recv());
  286. assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD),
  287. Err(Error::Exhausted));
  288. assert_eq!(socket.recv(), Ok(&cksumd_packet[..]));
  289. assert!(!socket.can_recv());
  290. }
  291. #[test]
  292. fn test_recv_truncated_slice() {
  293. let mut socket = socket(buffer(1), buffer(0));
  294. assert_eq!(socket.process(&HEADER_REPR, &PACKET_PAYLOAD),
  295. Ok(()));
  296. let mut slice = [0; 4];
  297. assert_eq!(socket.recv_slice(&mut slice[..]), Ok(4));
  298. assert_eq!(&slice, &PACKET_BYTES[..slice.len()]);
  299. }
  300. #[test]
  301. fn test_recv_truncated_packet() {
  302. let mut socket = socket(buffer(1), buffer(0));
  303. let mut buffer = vec![0; 128];
  304. buffer[..PACKET_BYTES.len()].copy_from_slice(&PACKET_BYTES[..]);
  305. assert_eq!(socket.process(&HEADER_REPR, &buffer),
  306. Err(Error::Truncated));
  307. }
  308. }